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Introduction.

In the previous talk we considered finite group group schemes

(1) defined over over an algebraically closed ground field, and

(2) we considered commutative group schemes and

(3) moreover we considered group schemes annihilated by p.

In this talk we drop all three conditions, and we wonder

Is a finite group scheme annihilated by its rank?

In the previous talk I discussed a proved theorem, and I hope you
enjoyed the beauty of that proof.
In this talk I discuss an open problem on which I am working since
1966.
Below I will discuss some cases where the answer is known to be
positive. Furthermore I discuss some (im)possible approaches. Up
to now these all failed. I give no guarantee that material developed
and discussed is useful.



Some notation. Although the title says “group schemes” all of
them will be finite and equivalently I will discuss Hopf algebras.

We write p for a fixed prime number. We write k for an
algebraically closed field of characteristic p. Saying G/S is a finite
group scheme we assume G → S is locally free and of finite
presentation.
Most of the time we take a local artin ring R; over R for a finitely
generated module the concepts

“flat” ↔ “projective” ↔ “free”

are equivalent. In this case a finite group scheme G over R
corresponds with a R Hopf algebra E , where E ∼= Rm for some
m ∈ Z>0; here m is called the rank of G/S : we distinguish the
notion of order of a finite group, versus rank of a finite group
scheme. In case we use the term “rank” we assume the group
scheme is of constant rank over the base scheme.



For a finite group scheme G/S and an integer d we write
[d ] : G → G for the morphism “exponentiation” by d . For a group
this is the map g → gd . For a group scheme G/S and a scheme
theoretic point x ∈ G (T ) this is x → xd . On the level of a Hopf
algebra this ring homomorphism is

[d ] :
(
E

sd−→ E⊗d
mult−→ E

)
.

For a finite group scheme of constant rank m over the base we
study the question:

[m] :
(
E

sm−→ E⊗m
mult−→ E

)
?
=

(
E

ϕ−→ E/IE = R → E
)
.

In group theory, and in the theory of group scheme in general [d ] is
not a homomorphism.
The set G [d ] of elements x with xd = e is in general not a
subgroup. For a group scheme G/S the subscheme G [d ] in general
is not a subgroup scheme and in general it is not flat over S .



A little warning

We consider finite group schemes G → S flat over S . However
there are many examples of non-flat finite maps, and of non-flat
finite group schemes H → S .

Artificial example. Take H → A1 with finite, non-trivial H0 above
0 ∈ A1 and Hs = {1}, the trivial group scheme above all
0 6= s ∈ A1. Clearly H → A1 is a finite morphism and we have a
non-flat group scheme.

Natural example. Let G → A1
k = S be a flat group scheme of rank

p in characteristic p with G0
∼= αp, and etale

(G \ G0)→ (A1 \ {0}). Define H = Ker(F : G → G ). We see
H → S is a finite morphism and we have a non-flat group scheme.

Natural example. Let G → A1
k = S be a flat group scheme of rank

p2 with G0
∼= (αp)2 and geometric generic fiber Gη ∼= µp2 . We see

H := Ker([p] : G → G ) is a finite morphism and we have a
non-flat group scheme.

Actually, the existence of (many) non-flat H ⊂ G inside a flat
finite group scheme G → S is a basic obstacle in our proofs.



In this talk we consider:

1 Known cases

2 Reduction of the problem

3 Some examples and questions

We will have short break after the discussion of examples and
questions.

4 Moduli, lifting problems, deformation theory

5 Group schemes of rank p2

6 Some answers

As you will see, in this talk almost all results are negative. The
problem we discuss seems not solved. We discuss some possible,
but failed attempts.



1 Known cases.

Etale group schemes.

For a group scheme G/S of rank m, where m is invertible in all
local rings of S , we know G → S is etale, hence locally constant,
and by group theory (the original Lagrange theorem) we conclude
G/S is annihilated by its rank.

In case we work over a field of positive characteristic p, or, more
generally over a local ring R with residue characteristic p,

we are reduced to the case that rank(G/S) = m = pn.



Commutative finite group schemes.

Theorem (Deligne, 1970). Any finite commutative group scheme
is annihilated by its rank.

Comment. In general we can try to transplant a proof in the
theory of groups to the theory of group schemes.

Suppose H is a finite commutative abstract group; in this case we
can prove Lagrange’s theorem as follows: for any y ∈ H with
#(H) = m we have

(
∏
z∈H

z) =
∏
x∈H

(yx)
∗
= ym × (

∏
x∈H

x); hence ym = e;

The equality
∗
= uses the fact that H is commutative. Deligne had

the insight how to formulate this proof “without using elements”.
For details see the TO paper, Theorem on page 4.



1 Known cases: over a field

Theorem. Suppose E is a Hopf-algebra finite over a field R = K .
In this case E is annihilated by its rank.

There are many proofs for this. We will follow:

Proposition (Edixhoven). Let A be a finite flat R-Hopf-algebra,
with augmentation ideal I ⊂ A. Let p be a prime number. In this
case

[p](I ) = pI + I p.

Sketch of a proof of the proposition. We may replace R by R/pR.
The regular representation of the Hopf algebra E gives a p2 × p2

matrix S ∈ GLp2 = Spec(B), ϕ : B → E .
The entries of S − 1p2 generate the augmentation ideal
I ′ = IB ⊂ B. As 0 = p·1 ∈ R we have Sp − 1p2 = (S − 1p2)p.
Hence [p](I ′) ⊂ (I ′)p.
Applying ϕ : B → E we obtain [p](I ) ⊂ I p as required.



A finite group scheme over a field is annihilated by its rank

Theorem. Suppose E is a Hopf-algebra finite over a field R = K .
In this case E is annihilated by its rank.

Sketch of a proof of the theorem.
By the exact sequence G/G 0 = G et we only need to show the case
of local group schemes. It suffices to show the case K − k is
algebraically closed. We see the local Hopf algebra is of rank pn for
some n and p the characteristic of k . By the proposition we have
[p](I ) = I p hence [pn](I ) = I p

n
= 0, which proves the theorem.



2 Reduction of the problem

In order to show that any finite group scheme G/S is annihilated
by its rank, or to give a counter example, it suffices to consider the
following

Question. Let p be a prime number, n ∈ Z>0 and m = pn. Let R
be a local artin ring with residue field k = R/mR algebraically
closed of characteristic p. Is every finite local group scheme G/R
of rank m annihilated by its rank?

We sketch the reduction steps. (1) Start with a finite G → S ;
covering S by affines it suffices to consider S = Spec(Γ).
(2) It suffices to assume S = Spec(R), where R is a local artin
ring.
(3) By the exact sequence G/G 0 = G et if suffices to consider G a
local group scheme. In that case the residue characteristic of R is
positive, call it p, and rank(G/R) = pn for some integer n.
(4) Extending R we can assume R/mR = k is algebraically closed.



I do not have a definite, final approach to the question whether a
finite group scheme is annihilated by its rank.

I present some examples, and some questions one can ask in order
to try to achieve progress. This is just a very small list of the
various approaches I tried.



3 Some examples and questions

3.1 TO group schemes

Group schemes of rank p are classified over a base with mild
conditions. In particular if R is a complete local ring with residue
characteristic p:
Theorem (John Tate - FO).
(1) For a noetherian complete local ring R with residue class field
R/mR = κ, a field of characteristic p, and

a, c ∈ R with ac = p and comultiplication s(−) and coinverse ι(−)

given above the result is a R-Hopf-algebra free of rank p.
(2) Conversely if G is a flat R-group scheme of rank p there exist
a, c , s, ι as above such that G ∼= Spec(R[x ]).



Notation.
This group scheme will be denoted by G c

a = G c
a,R .

(3) The group schemes

G c1
a1

and G c2
a2

are isomorphic R-group schemes

if and only if there exists a unit u ∈ R∗ such that

up−1a1 = a2 and u1−pc1 = c2.

The group schemes Ga,b. Using (over a base ring R, omitted in
the notation here) the group scheme G c

a , with ac = p, writing
b = wp−1c , we define Ga,b by

Ga,b = G c
a = G

b/wp−1
a = Ga,wp−1c , awp−1c = ab = wp−1p.

In particular, if p·1 = 0 ∈ R: G0,0 = αp.

Z/p
R

= G1,0 = G 0
1 , and µp,R = G−1

0 = G0,1.



3.2 Semidirect products

Let N and H be (abstract) groups, written multiplicatively. Let
ϕ : H → Aut(N) be a homomorphism of groups. We define the
semidirect product

G = N oϕ H

as follows: as sets we have a bijection G = N × H, and the group
law on this product is given by:

(x1, y1)·(x2, y2) := (x1·ϕ(y1)(x2), y1·y2).

We see that conjugation on the normal subgroup N ⊂ G is given by

(1, y)·(x , 1)·(1, y−1) = (ϕ(y)(x), 1).

Note that N = {(x , 1)} ⊂ G and H = {(1, y)} ⊂ G are subgroups.



Easy considerations in theory of finite groups. The exponent of G
is the minimum for order(x) for all x ∈ G .
Suppose the exponent of G is a prime number p. Does this imply
G is commutative?
For p = 2: any G of exponent 2 is commutative.
Proof: e = (xy)2 = xyxy hence xy = y−1x−1 = yx .

For p ≥ 2: Heisenberg groups, Construction of UT(3,p).
Let G be the group generated by x and y with

z := x−1y−1xy , xz = zx , yz = zy , xp = yp = zp = e.

We see xy = yxz , the subgroups < x , z > and < y , z > are normal
in G , every element can be written in a unique way as xuy vzw ,
with 0 ≤ u, v ,w < p, we have

G ∼= < x , z > o < y > ∼= < y , z > o < x >,

the order of G equals p3 and G is not commutative.



The exponent of a Heisenberg group

p = 2 The Heisenberg group UT(3,2) ∼= D8 is the dihedral group
of order 8, it is non-commutative, and its exponent is 4.

p > 2 The Heisenberg group UT(3,p) is non-commutative and its
exponent is p.
Proof. Show that

(yxz)k = ykxkz1+2+···+k ;

note that 1 + 2 is not divisible by 2, and that for p > 2 the integer
1 + 2 + · · ·+ p = p(p + 1)/2 is divisible by p.

Conclusion: for p > 2 there exists a non-commutative group of
exponent p.

This Heisenberg group can be defined with the help of 3× 3
matrices. I leave that interesting topic to the audience.



3.3 Question A: existence of flat subgroup schemes?

Note:
any finite p-group has a non-trivial centre

(not true for group schemes),
a group of order p2 is commutative (not true for group schemes).

Method (?!): try to “transplant an idea that works for abstract
groups into the theory of group schemes”. We saw the wonderful
theorem of Deligne for commutative groups. Here is another
attempt:

Question A. Let G → Spec(R) be a finite local group scheme
over a local artin ring (say, of rank pn with n ≥ 2). Does G
contain a subgroup scheme {e} $ N $ G flat over S?

Comment. A positive answer to this question would solve our
problem (apply induction on the rank of G ).
For any non-trivial G and R 6= R/mR the answer is “yes” for the
question where you drop the condition N is flat over R.



3.4 A non-commutative group scheme of rank p2

An easy way to remember the construction over a field of
characteristic p is:

T =

(
µp αp

0 1

)
.

This group scheme T has the following properties:

I rank(T ) = p2 and T is non-commutative;

I T = Spec(R[ρ, σ]/(ρp − 1, σp)), the comultiplication is given
by

s(ρ) = ρ⊗ ρ, s(σ) = ρ⊗ σ + σ ⊗ 1,

the augmentation is given by ρ 7→ 1, σ 7→ 0,
and the coinverse is given by ρ 7→ 1/ρ, σ 7→ −σ/ρ;



I there is an exact sequence

e → αp → T → µp → e,

R[σ′]� R[ρ, σ]←↩ R[ρ], σ′ ← [ σ,

where the normal subgroup αp ⊂ T is given by ρ 7→ 1
and there is a subgroup µp ⊂ T given by σ = 0;

I in fact

T = αpoµp, given by the natural map µp ↪→ Aut(αp) ∼= Gm,

and the center of this semi-direct product is the trivial
subgroup e : S → T .

I Note that ϕ1 : µp ↪→ Gm and ϕ2 : µp ↪→ Gm give

αp oϕ1 µp
∼= αp oϕ2 µp.

I T is not annihilated by p, and T is annihilated by p2.



3.5 Group schemes of rank p2

Theorem (Schoof, 2001). Let k = k ⊃ Fp. Suppose G is a
non-commutative group scheme of rank p2 over k . Then
G ∼= T ⊗ k .

As a corollary we have a classification of all isomorphism classes of
group schemes of rank p2 over k . There are 9 isomorphism classes.

I If G is non-commutative G ∼= T ⊗ k .
For commutative group schemes:

I If G is etale with local dual, either G ∼= Z/(p2) or

G ∼= (Z/p)2.

I If G is local with etale dual, either G ∼= µp2 or G ∼= (µp)2.

I If G is local with local dual, as we have seen, there are 4 cases
for the Dieudonné modules: (M ′∅)

2, M ′F , M ′V , M[FV].



3.6 Question B: lifting to an integral domain

Note that a finite group scheme over a field is annihilated by its
rank. Hence a finite group scheme over an integral domain is
annihilated by its rank. Hence we could be interested in:

Question B. Suppose R is a local artin ring and G0 a finite group
scheme over R. Does there exist an integral domain Γ, a finite
group scheme over Γ, and a homomorphism Γ→ R such that
G ⊗Γ R ∼= R?



3.7 Question C: non-commutative group schemes of
rank p2

It is know that for a field K ⊃ Fp and the non-commutative group
scheme H0 = T of rank p2 constructed in 3.4, and a lifting of H0

to a local artin ring R → K , with G finite over R and
H ⊗R K ∼= T = H0

then 0 = p·1 ∈ R.

Hence, naturally the following question comes up:

Question C. Suppose R is a local artin ring, residue characteristic
p and G is a finite, non-commutative group scheme over R of rank
p2. Does this imply 0 = p·1 ∈ R?

We have a short break now.



4 Moduli, lifting problems, deformation theory

Please see te notes for explanation, examples and much more.
We use one construction.

For a given m ∈ Z>0 we study triples (R,N, β), were R is a
commutative ring with 1 ∈ R, and N = Spec(E )→ Spec(R) is a
(finite) group scheme, with augmentation ideal
I = IE = Ker(E → R), and

β : Rm−1 ∼−→ I

is an isomorphism of R-modules. This implies that E is R-free
hence R-flat. Note that the interesting case that R is a local ring
and E is finitely generated and flat implies that E is R-projective,
hence E is R-free, and I is R-free of rank equal to rank(E/R)− 1.



We show that R 7→ (R,N, β) defines a representable functor.
Theorem.There exists such a triple (R(m),N (m), β(m)), we write
R = R(m), N (m) = Spec(R(m)),
such that for any triple (R,N, β) there exists a unique ring
homomorphism ψ : R(m) → R such that

(R,N, β) ∼= (R(m),N (m), β(m))⊗R(m) R.

Proof. The equations for comultiplication, coinverse, and
augmentation are given by a finite number of coefficients. Use
these as variables Ti ; the Hopf-algebra conditions give an ideal
J = J(m) ⊂ Z[Ti ], write R(m) = Z[Ti ]/J, and define the
R(m)-Hopf-algebra R(m) by these relations. For any (R,N, β) the
coefficients in its comultiplication, coinverse, and augmentation
define ψ : R(m) → R and the result follows.



Remark. For any algebraically closed field k the set of
k-isomorphism classes of finite group schemes of rank p equals
GL(k, p)\RingHom(R(m), k). Even in case the quotient
GLp\(Spec(R(m)) would exist, in general N (m) does not descend
to this quotient.
Example. In case n = p = 2 we know

R = Spec(Z[A,C ]/(AC − p)), and the structure of R(2) ⊂ A(2)
Z is

known as is proved in the Tate-FO paper.
If n = p > 2 the structure of R(p) is more complicated. For Λp as
in Tate-FO paper, the quotient of Spec(R(p))⊗ Λp by GLp and by
Z/(p − 1) is isomorphic with Spec(Λp[A,B]/(AB + p)), which is
an integral domain.

It seems not easy to describe R(m) explicitly for every m.

Expectation. We expect that in case m = pn any irreducible
component S ⊂ Spec(R(pn)) has a geometric point P0 ∈ S(k)
such that (N (n) |S)×S P0

∼= (αp)n.



Structure of moduli spaces of finite group schemes,
expectations:

The following could very well be true: consider all irreducible
components of Spec(R(pn)) and of Spec(R(pn) ⊗ Fp). I would
guess:

the number of irreducible components of Spec(R(p2)) equals 3 (?)

the number of irreducible components of Spec(R(p2) ⊗ Fp) equals
5, and every of these irreducible components is a reduced scheme
(??).

It might be that a precise description of Spec(R(p2)) gives an
answer to the question whether every group of rank p2 is
annihilated by p2.



Comments. Compare different situations, e.g. the (coarse) moduli
scheme Mg of algebraic curves of genus g > 1 on the one hand
and the “moduli space” Spec(R(m)) for finite group schemes of
rank m = pn constructed here. Note that the automorphism group
of a curve of genus g > 1 is finite, however the automorphism
group of may finite group schemes is infinite. This makes the
difference in constructions and in properties

For curves, the geometric points in Mg : there are the infinitely
many isomorphism classes of algebraic curves of genus g .

For example for m = p or m = p2 the number of geometric
isomorphism classes of group schemes of rank m is finite, but
Spec(R(m)) has infinitely many geometric points because of the
rigidification β : Rm−1 ∼−→ I . The “moduli space” of isomorphism
classes of finite group schemes is not interesting; for geometric and
arithmetic applications we have to consider the situation as
described here.



5 Group schemes of rank p2; a negative answer for
Question C

We will see that answer to all questions A-B-C are negative, hence
no progress in the annihilation-by-rank-problem along these ideas.

Question C. Suppose R is a local artin ring, residue characteristic
p and G is a finite, non-commutative group scheme over R of rank
p2. Does this imply 0 = p·1 ∈ R?

In fact what is true:

Answer C. For any prime number p, for any integer r ∈ Z>0 there
exists an R with pr ·1 6= 0 ∈ R, and a, c,C ∈ mR and A ∈ R and a
non-commutative G c

a o GC
A over R.

A proof can be found in the notes: study Aut(G c
a ) and find

appropriate R and non-trivial GC
A → Aut(G c

a ).
For later use we mention: there is a non-commutative G c

a o GC
A

over R with ε ∈ mR , and ε2 = p and ε3 = 0.



An afterthought. We see the curious situation that:

(non-lift) the non-commutative T = αp oϕ µp over K ⊃ Fp

cannot be lifted to a ring R in which 0 6= p·1 ∈ R

however, for any r ∈ Z>0

(lift) αp × αp over K ⊃ Fp can be lifted to a non-commutative
group scheme over a ring R in which 0 6= pr ·1 ∈ R.

I have no good description of the moduli space of group schemes
of rank p2.
We see there is a least one irreducible component not over Fp that
carries non-commutative group schemes, but this component does
not have a point over an integral domain of characteristic zero.

Problem. Describe all components of the moduli space
Spec(R(p2) ⊗ Fp). Is every component of this a reduced scheme?



6 Some answers: questions B and C

Question B. Suppose R is a local artin ring and G0 a finite group
scheme over R. Does there exist an integral domain Γ, a finite
group scheme over Γ, and a homomorphism Γ→ R such that
G ⊗Γ R ∼= R?

There are many counter examples possible.

Here is an easy example. Take a = ε = b with ε2 = 0. The finite
group scheme G = Ga,b in characteristic p does not admit a lift to
an integral domain Γ ⊃ Fp (do you see a proof?). However this
group scheme G does admit a lift to a mixed characteristic domain
where p is ramified.

We will see “better” examples.



Questions A and B have a negative answer.

Question A. Let G → Spec(R) be a finite local group scheme
over a local artin ring. Does G contain a subgroup scheme
{e} $ N $ G flat over S?

Question B. Suppose R is a local artin ring and G0 a finite group
scheme over R. Does there exist an integral domain Γ, a finite
group scheme over Γ, and a homomorphism Γ→ R such that
G ⊗Γ R ∼= R?

Construction. Choose any p and m = p2. Take the moduli space
given by M = Spec(R(p2)). Choose 0 ∈ M such that

N (p2)
0
∼= (αp)2. Let O be the local ring O = OM,0. Define

R = O/((mO)3) and G = N (p2) ⊗R(p2) R.



Comment / explanation. We see that G/R is “the universal
deformation” of G0 = (αp)2 over artin rings with m3 = 0.

Claim. The situation G/R constructed here gives a negative
answer to Question A (existence of a flat subgroup scheme) and a
negative answer to Question B (lifting to a domain). We fix the
G/R as constructed above.

(1) Observe that G/R is not commutative, as we have seen in
(lift) above.
(2) Observe that αp can be deformed over R ′ = k[ε]/(ε2) to Gε,0
and to G0,ε. Hence G/R admits ρ : R → R ′ with
G ⊗ R ′ ∼= Gε,0 × G0,ε.



Question A. Let G → Spec(R) be a finite local group scheme
over a local artin ring. Does G contain a subgroup scheme
{e} $ N $ G flat over S?

(A) Note that End((αp,Fp)2) = GL(2,Fp). By “transport of
structure” this ring operates faithfully on G/R. Suppose there
would exist {e} $ N $ G flat over R. Using the the action of
End((αp,Fp)2) on N ⊂ G shows that any

N0,ψ = αp,Fp

ψ
↪→ (αp,Fp)2

can be lifted to a flat Nψ ⊂ G over R. This would imply that any
ψ = {(1, 1)} would give a flat Nψ ⊗ R ′ ⊂ Gε,0 × G0,ε, giving an
isomorphism between Gε,0 and G0,ε. This contradiction shows
N ⊂ G as indicated does not exist: a negative answer to Question
A, a proof of the claim part A.



Question B. Suppose R is a local artin ring and G0 a finite group
scheme over R. Does there exist an integral domain Γ, a finite
group scheme over Γ, and a homomorphism Γ→ R such that
G ⊗Γ R ∼= R?

(B) Note that 0 6= p·1 ∈ R and G/R is not-commutative of rank
p2. Suppose G/R could be lifted to a domain Γ� R. Then the
characteristic of Γ is not positive, hence equal to zero. We would
obtain a finite group scheme of rank p2 over the fraction field of Γ,
hence an etale group scheme, over the algebraic closure a constant
group scheme of rank p2. That is commutative by group theory, a
contradiction. This shows the lift as assumed to an integral
domain does not exist: a negative answer to Question B a proof of
the claim part B.



I thank the organizers for giving me the opportunity to talk to you.

Thank you for your attention.

Wish you many happy mathematics years.


