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Introduction.

Topic of this talk: a classification of finite commutative group
schemes annihilated by p over a perfect field as announced in 1975
by Hanspeter Kraft. This implies that the set of isomorphisms
classes of such group schemes of a fixed rank over an algebraically
closed field is finite. Dieudonné module theory translates this
question into:

Study the category of modules M ∈M of finite length (of finite
dimension over k) over the ring R = k{F ,V}.

Here k is an algebraically closed field of characteristic p, and

FV = 0 = VF , Fx = xpF , xV = Vxp.



Strategy for the proof

Theorem (Krull-Remak-Schmidt). Let R be a ring. Consider
left-R-modules that are noetherian and artinian (i.e. satisfying the
ascending and descending chain condition). Such a module can
be written as sum of indecomposable modules, and if we have two
such decompositions

M ∼=
∑
i∈I

M
(1)
i
∼=
∑
j∈J

M
(2)
j

then there exists a bijection f : I → J and isomorphism

M
(1)
i
∼= M

(2)
f (i). (A proof is not very difficult.)

We write M for the category of modules of finite length (of finite
dimension over k) over the ring R = k{F ,V}.

Which are the indecomposable objects in M ?



An object 0 6= M in an abelian category is simple if 0 ⊂ P ( M
implies 0 = P.
An object 0 6= M in an abelian category is indecomposable if
M = P ′ ⊕ P ′′ implies either M = P ′ or M = P ′′.

Example. In the category of finite abelian groups the simple
objects are Z/p, where p is a prime number, and the
indecomposable objects are Z/(pn).

We are going to show properties of Dieudonné modules:

(A) Construct candidates for indecomposable modules in M,
bellow introduced as M ′u and Mw .

(D) Then show these are indeed indecomposable,

(E) and prove these are all possible indecomposable modules.



Hanspeter Kraft, 1944 –

Theorem. Every M ∈M decomposes as

M = (⊕u∈L M ′u)
⊕

(⊕w∈C Mw ).

Corollary. Let k be an algebraically closed field of characteristic p.
For any n ∈ Z>0 the set of k-isomorphism classes of finite
commutative group schemes of rank pn annihilated by p is finite.



BT1-modules

Remark / Definition. For a module over k{F ,V} we have
V(M) ⊂ Ker(F) and F(M) ⊂ Ker(V). Suppose dimk(M) <∞.
Note that dim(Ker(F)) + dim(F(M)) = dim(M) and the same
for V. Hence:

(V(M) = Ker(F))⇐⇒ (F(M) = Ker(V)).

We say M is a BT1-module; BT= Barsotti-Tate, and we consider
BT-modules “truncated at level one”.

We will see that indecomposable BT1-modules on the one hand,
and indecomposable modules with V(M) $ Ker(F), “linear
modules” will play different roles.



Comment.
The theorem described today was announced in a preprint by
Hanspeter Kraft in 1975.
His idea basically is precise and turns out to be correct.
In that preprint proofs seem to be not complete.

For BT1 group schemes proofs have been given (FO, Ben Moonen).

A complete proof for the general case will appear soon.
Contemplate. Is this an interesting question? In mathematics some
problems are more interesting than others. From the classification
given in this talk finiteness follows, and we will comment later how
this is used in geometry.

A crucial observation: for any abelian variety A the kernel
A[p] = Ker([p] : A→ A) (all “scheme theoretic p-torsion points”)
is a BT1 group scheme. Classification of such group schemes
provides us with an (important !) invariant for A.



Notation. Consider 0 6= x ∈ M. We write:

I Fx if x ∈ Image(F): ∃y ∈ M: y
F7→ x ;

I Vx if x 6∈ Ker(V): 0 6= V(x)
V←[ x ;

I ∅x if x 6∈ Image(F) and V(x) = 0;

I xF if x 6∈ Ker(F): x
F7→ F(x) 6= 0;

I xV if x ∈ Image(V): ∃z ∈ M: x
V←[ z ;

I x∅ if x 6∈ Image(V) and F(x) = 0;

note the direction of the arrows:

F points to the right, V points to the left.

As FV = 0 = VF we have Ker(V) ⊂ F(M) and Ker(F) ⊂ V(M).



Example. We consider Fx , i.e. x ∈ Image(F);

this means ∃y ∈ M with y
F7→ x , and

it implies V(x) = 0. We determine all possibilities in this case.

There are three possibilities:

I x = V(z), then F(x) = 0, we write:

FxV, y
F7→ x

V←[ z ;

if x 6∈ Image(V), then either F(x) 6= 0 or F(x) = 0;

I F(x) 6= 0, then x 6∈ Image(V), we write:

FxF , y
F7→ x

F7→6= 0;

I x 6∈ Image(V) and F(x) = 0, we write

Fx∅ y
F7→ x

F7→ (= 0), x
V7→ (= 0).

I.e. in this case the possibilities are: Fx? with ? ∈ {V,F , ∅}.



We list al possibilities:

Vx Vx 6= 0 x 6∈ Ker(V) (V(x) 6= 0)
V← [ x

Fx ∃y ∈ M with Fy = x x ∈ F(M) y
F7→ x , V(x) = 0

∅x x ∈ Ker(V) and x 6∈ F(M)

xF Fx 6= 0 x 6∈ Ker(F) x
F7→ (F(x) 6= 0)

xV ∃y ∈ M with Vy = x x
V← [ y , F(x) = 0

x∅ x ∈ Ker(F) and x 6∈ V(M)

Conclusion: L1xL2, with L1, L2 ∈ {F ,V, ∅}, describes all possibilities for
0 6= x ∈ M (nine possibilities).

Please understand and remember this. These considerations will be used

later in the construction of directed graphs.



(A) Construction of M ′u, linear words.

Let h ∈ Z≥0, let L1, · · · , Lh ∈ {F ,V}; write u = ∅ if h = 0, and
otherwise u = (L1 · · · Lh); we say u is a linear word. We choose a
k-vector space of dimension h + 1

M ′u =
∑

1≤i≤h+1

k ·zi

and we define F and V on M ′u by

∅z1L1z2 · · · zhLhzh+1∅;

sometimes we write L0 = ∅, and Lh+1 = ∅. For every index i the
notation Li−1ziLi defines F(zi ) and V(zi ). Moreover
FV = 0 = VF for every base vector.
Conclusion. We have defined a Dieudonné module M ′u ∈M.
Moreover Fh+1 and Vh+1 are zero on M ′u (give a proof); hence
M ′u ∈M is “local-local”.



Some properties of M ′u.

A particular case. For the emptyword, h = 0, we see M ′∅ has
dimension one, and F and V are zero on this module. We see
D(αp) = M ′∅.

Claim. For every word u, and M = M ′u, we have

V(M) $ Ker(F) and F(M) $ Ker(V).

For ∅z1? we see z1 6∈ F(M) and z1 ∈ Ker(V);
For ?zh∅ we see zh 6∈ V(M) and z1 ∈ Ker(F).

Observe that in the category of modules in M with F and V
nilpotent the module M ′∅ = D(αp) is the unique simple object.



(A) Construction of Mw , circular words.

Let h ∈ Z≥1, let L1, · · · , Lh ∈ {F ,V}. We write w = [L1 · · · Lh],
call this a circular word; define Lj for every j ∈ Z: write Lj+mh = Lj
for every m ∈ Z; circular permutations (shift of indices) give an
equivalence between circular word; its equivalence class is indicated
by bwe. We choose a k-vector space of dimension h

Mbwe =
∑

1≤i≤h
k ·zi

and we define F and V on Mbwe by

z1L1z2 · · · zhLhz1.

For every index i the notation L1−iziLi defines F(zi ) and V(zi ).
Moreover FV = 0 = VF for every base vector.
Conclusion. We have defined a Dieudonné module Mbwe.
Notation, sometimes we write Mw instead.



Some properties of Mw .

I The objets MF = D(µp) and MV = D(Z/p) are simple
objects in M.

I Every Mw is a BT1-module.

I If F and V both appear in w then Mw is local-local, i.e. F
and V are nilpotent on M.

I For every w and every d ∈ Z>0, there is an isomorphism
Mbwde

∼= (Mbwe)
d ; here we write

wd = [L1 · · · Lh, · · · , L1 · · · Lh], the word w repeated d times.
In a proof of this fact we use Fpd ⊂ k .

I Definition. A circular word w ′ is said to be indecomposable if
there does not exists a circular word w and d ∈ Z>1 with
w ′ = wd .



Plan. Show:

(Du) Every M ′u is indecomposable.

(Dw) For every indecomposable circular word w the module Mw is
indecomposable.

I For every indecomposable M ∈M either ∃u: M ∼= M ′u,
or ∃w : M ∼= Mw .

Difficulties.

I Decomposition in indecomposables is far from unique.

I In general there are many homomorphism M ′u → Mw and
Mw → M ′u.

I Perhaps there are direct proofs for (Du) and for (Dw), but
these seems complicated.

I Given M ∈M how do you recognize which u and w are
needed for the decomposition in indecomposables?



The problems:

I Indecomposability,

I recognize which u and w appear for a given M ∈M
seem hard under direct approach. After the break I will discuss a
tool, (B) canonical filtrations, that gives access to these questions.

Please note:

I For a given M ∈M the decomposition isomorphism is in
general far from unique.

I There is no canonical maximal BT1 submodule in M, there is
no canonical maximal direct sum of M ′u inside M.

I However, we will see, and this is also clear from the
Krull-Remak-Schmidt theorem once we have proved our main
result, that for a given M the set of linear words u and the
indecomposable circular words w needed is unique. We
construct a method to find these sets of words needed for a
given M.



Interesting, not discussed in my talk: consider MBT ⊂M, the
category of BT1-modules. We will see that in this additive
category in general the kernel of homomorphism and the cokernel
of a homomorphism are not in this category (give examples).

We have seen objects MF and MV , simple in M and simple in
MBT.

However M ′∅ is not in MBT.

What are the objects simple in MBT?
A complete classification is known, but it is not easy to describe,
and a proof of that classification requires soms work.
If you feel like thinking about this, consider a possible proof for:

M[FFFFVFV] is not simple in MBT,
can you give an inclusion M[w ′] into this module? But

M[FFFVFFV] is simple in MBT.
You obtain a feeling for this subtlety.
The notion “ simple in MBT ” will not be used today.



Exercises. Work over k = k ⊃ Fp.
1) Classify all M ∈M with F and V nilpotent and dimk(M) = 2
(you did this already in this workshop, please refresh).

2) Give a bijection Ext(M ′∅,M
′
∅) = k2.

You see this Ext-group is an infinite set. Does this contradict
finiteness of isomorphism classes of all M with M/M ′∅

∼= M ′∅?
Explain! and understand.
I will give comments after the break.

In case you have more time left, you can consider:

3) Give linear words u1, and u2 and a morphism ϕ : M ′u1 → M ′u2
such that Ker(ϕ) and Coker(ϕ) are in MBT.

4) Choose u = VFFVF ; show P := M ′u is indecomposable.
(It seems this gives a hint how to prove indecomposablity directly.)

Now we have a BREAK after the first part.



John Tate, 1925 – 2019

John Tate had an impressive influence on developments in arithmetic
geometry. For me it was wonderful to be present at a course Tate taught
in 1966-1967 at Harvard University, where one of the aims was the
classification of group schemes of prime order. Another idea developed by
Tate, and also by Barsotti, was the construction of p-divisible groups;
their properties are of crucial influence in many considerations of
geometry, arithmetic and number theory. I have warm and intense
memories to this extraordinary person and great mathematician.



Torsten Ekedahl, 1955 – 2011

In 1985 Torsten Ekedahl discussed an idea with me: For every abelian
variety A classify the isomorphism classes A[p∞]. His idea was the
starting point that the stratum of all abelian varieties with mutually
isomorphic p-kernels should be quasi-affine.

We got stuck in various stages of the this process. One of the obstacles
was the result described in this talk. In 2000 finally, details were
completed, and Torsten did choose that I should write the publications
(2000) under my name only. The result is a stratification, now called the
EO-stratification (finite by the results presented today) of Ag ,1 ⊗ Fp; the
boundary of every positive dimensional stratum is a union of smaller
strata: it looks like a cell decomposition as constructed in manifolds.
Many results have been proved using this stratification.



An aside. Minimal p-divisible groups.
A p-divisible group of height h over a base scheme S is given as an
inductive system X = (· · ·Gn ⊂ Gn+1 · · · ), of finite flat group
schemes over S , with the property that (∪Gn)[pi ] = Gi . This
means that for every m and n there is an exact sequence

0→ Gm → Gm+n → Gn → 0.

In particular

Gn+1/Gn
∼= G1

∼= Im([pn] : Gn+1 → Gn+1) :

you can view X as a tower of extensions where every consecutive
subquotient is isomorphic with G1. We say that Gn = X [pn] is a
Barsotti-Tate group truncated at level n.

A fascinating story: does X [p] ∼= Y [p] imply X ∼= Y ? This was
asked by Grothendieck in a letter on January 5, 1970 to David
Mumford. And Mumford answered: for many p-divisible groups the
answer is “no”.



Historical remark. The correspondence between Grothendieck and
Mumford only became known and available to me in 2010; I did
not know this question by Grothendieck and the answer by
Mumford when I worked many years ago on this topic

The p-divisible groups for which X [p] ∼= Y [p] implies X ∼= Y I
called “minimal”; a classification is known (the problem being
reduced to a combinatorial one). These play a crucial role in
understanding the foliation of the moduli space of polarized
abelian varieties in characteristic p by isomorphism classes of
A[p∞]. Moreover:

for every X the BT1 group scheme X [p] ∈MBT
k is a simple object

in MBT
k if and only if X is a minimal p-divisible group.



An example.
We show that M = M[FFFFVFV] is not simple in MBT.

Write z1Fz2Fz3Fz4Fz5Vz6Fz7Vz1.

Note z3
F7→ z4

F7→ z5
V←[ z6, and V(z3) = 0 = F2(z6).

Choose P = M[FFV] generated by e ∈ P with F2(e) = V(e).

We define ϕ : P ↪→ M by ϕ(e) = z3 + z6.
Indeed

ϕ(F2(e)) = F2(z3 + z6) = z5 =

= z5 = V(z6) = V(z3 + z6) = ϕ(V(e))).



Comments on two of the excercices.
1) All M ∈M with F and V nilpotent and dimk(M) = 2
2) Give a bijection Ext(M ′∅,M

′
∅) = k2.

We know there exist k ·e = M ′∅ ⊂ M. Choose h ∈ M with h 6∈ k·e.
The structure of M is defined by F(h) = b·h and V(h) = c ·h.

Indeed an extension, P ′ = k·e,
M/(k ·e) ∼= P ′′ = k ·(f mod k ·e) ∼= M ′∅ is given by any (b, c) ∈ k2.

The action of End(k·e)× End(P ′′) has four orbits. The set of
extensions is not finite; the set of isomorphism classes of such M
has cardinality 4; orbits:
(b, c) = (0, 0), then M ∼= P ′ ⊕ P ′′;
b = 0, c 6= 0 then M ∼= M ′V ;
b 6= 0, c = 0 then M ∼= M ′F ;
b 6= 0, c 6= 0 then M ∼= MFV .



We start with: (B) canonical filtrations

A flag

S∗ = (0 =$ S1 $ · · · $ Si $ Si+1 · · · Sr = M)

of Dieudonné submodules is called saturated if two conditions are
fulfilled: for every index 0 ≤ i < m either the map induced by F
on Si+1/Si is zero, or there exists j and a bijective map

F mod F(Si ) :
Si+1

Si

∼−→
Sj+1

Sj
;

for every index 0 ≤ i < m either the map induced by V on Si+1/Si
is zero, or there exists j and a bijective map

V mod V(Si ) :
Si+1

Si

∼−→
Sj+1

Sj
.



(B) Construction of the canonical filtration

For a filtration S∗ we use the following operations:

I (F )(S∗): add all Si + (F(Sj) ∩ Si+1) and
((F ))(S∗) := (F )�0(S∗);
analogous notation for ((V−1)), ((V )), ((F−1)); each of these
operations refines the previous filtration;

I (V−1-F )(S∗) :=
(
((V−1))((F ))

)�0
(S∗); analogous notation

for (F−1-V )(S∗).

I Start with S (0) = (0 ⊂ M). Define

S (2m+1) = (V−1-F )(S (2m)), S (2m+2) = (F−1-V )(S (2m+1)).

I In S (�0) renumber the steps in order to obtain a flag:

Q∗ = (0 =$ Q1 ⊂ Qi $ Qi+1 ⊂ Qr = M) ,

the canonical filtration of the module M. This is called the
V−1-F canonical filtration.



I As we start with ((F ))(S0), we see that all At := F tM appear
as submodules in Q∗:

0 = Am := FmA $ Am−1 ⊂ · · ·A1 = FM ⊂ A0 := M.

I Remark: in general VtA do not appear in this filtration and in
general F tA do not appear in the (F−1 − V ) canonical flag.

I Remark. For a BT1-module it suffices to choose (V−1-F )(S∗)
and obtain a saturated filtration; however if at least two
different linear words appear this will not give a saturated
filtration, and we extend the procedure as is described above.

BB Proposition. For any M ∈M its canonical filtration
Q∗ = Q(M) is saturated.
Observation. For a direct sum M = P ′ ⊕ P ′′ the canonical
filtration of M can be given by constructing the canonical
filtrations of P ′ and P ′′ separately.



Tool: Directed graphs

Suppose given M and saturated flag R∗ of Diedonné submodules in
M. We define a directed graph Γ(R∗), remember the possibilities
LxL′, with L, L′ ∈ {F ,V, ∅}:
I the set vertices is {0, · · · , r − 1}; this is the same as
{Rj+1/Rj | 0 ≤ j < r};

I for any bijective map

F : (Ri+1/Ri )
∼→ (Rj+1/Rj) an edge is given by i 7→ j with

label F ;

for any bijective map

V : (Ri+1/Ri )
∼→ (Rj+1/Rj) an edge is given by i ←[ j with

label V .

I Note the direction of the arrows: the last one could also
better be baptized, or understood as V−1.



(C) The associated graded
For a given M and a flag R∗ of Diedonné submodules in M define

G(R∗) :=
∑

1≤j<r

Rj+1/Rj .

As we supposed R∗ is saturated, in this case the maps induced by
F and V on these subquotients give G(R∗) the structure of a
Dieudonné module.

Observation. Suppose M = P ′ ⊕ P ′′ and consider the canonical
filtration Q∗(M). Then

G(Q∗(M)) ∼= G(Q∗(P
′))⊕ G(Q∗(P

′′))

A priority, there is no obvious map M → G(M) and no obvious
M ← G(M)
Observation. The Dieudonné modules M and G(Q∗(M)) have
equal directed graphs

Γ(Q∗(M)) = Γ(G(Q∗(M)).



(D) Indecomposable modules

Proposition. For every linear word the module M ′u is
indecomposable.
For every indecomposable circular word w the module Mw is
indecomposable.

We indicate a proof, leaving out details that can be easily filled in.

Consider M = M ′u, and consider the canonical filtration Q∗(M).
Observe that Γ(Q∗(M)) is connected: “following the word” u all
steps in the filtration are connected by a string of bijections F and
V. If M = M ′u = P ′ ⊕ P ′′ with non-zero summands, then we would
have

Γ(Q∗(M)) = Γ(Q∗(P
′)) t Γ(Q∗(P

′′)),

a contradiction.
Arguments for indecomposability of Mw for an indecomposable w
follow the same pattern.



An aside.

In this talk we leave out some technical details, not very important
for understanding the general pattern.

Filtrations can be refined. A final filtration is a saturated filtration
where all subquotients have dimension one.

Every saturated filtration of M can be refined to a final filtration.

In general there are many final filtrations of M. However the
associated graded of two final filtrations are canonically isomorphic.
In this way ons shows that, although (V−1-F ) and (F−1-V ) may
give different filtrations, refining to final filtrations give ”the same”
up to a permutation of the steps. Hence, without fear for
confusion we can write Γ(M), constructions with possible different
final filtrations.

The concept Γ(M) attached to M is canonical.



Suggestion. If you want to become familiar with canonical
filtrations, work out some easy examples, e.g. Q∗(M[FVFV]),
Q∗(M

′
FFV), Q∗(M

′
F ⊕M ′V ⊕M[FV]).

Semilinear maps. We work over a field K ⊃ Fp. Let M be a vector
space over a field K , and q = pe . We say ϕ : M → M is a
q-semilinear map, if it is a homomorphism of additive groups with
moreover the property that

ϕ(a·x) = aq·ϕ(x), a ∈ K , x ∈ M.



Some excercises.
5) Consider over a field K the matrix

A =

(
1 0
1 1

)
5a) Show there does not exist a matrix S with
S−1AS = Diag(1, 1).
5b) Suppose K = k ⊃ Fp algebraically closed and q = pe . Show
for any non-zero λ1, λ2 ∈ k there exists

S ∈ GL(2, k) such that S−1AS (q) = Diag(λ1, λ2).

6) Consider M := M ′∅ ⊕M ′F .
(6.a) Apply the process of taking “all F images, all V−1 images”,
that is, apply (V−1-F ). Show the filtration (V−1-F )(0 ⊂ M)
obtained is not saturated.
(6.b) Apply the process of taking “all V images, all F−1 images”,
that is, apply (F−1-V ). Show the filtration (F−1-V )(0 ⊂ M)
obtained is not saturated. Now a BREAK after part two.



Tool: Semilinear maps
We work over a field K ⊃ Fp. Let M be a vector space over a field
K , and q = pe . We say ϕ : M → M is a q-semilinear map, if it is a
homomorphism of additive groups with moreover the property that

ϕ(a·x) = aq·ϕ(x), a ∈ K , x ∈ M.

Write G = GLd for the matrix group with G = GL(d , k) = GLd(k)
the group of square d × d matrices over k with non-zero
determinant.
Theorem (Hasse-Witt, Lang-Steinberg). Let k = k ⊃ Fp be an
algebraically closed field op characteristic p. Let q = pe , and let
d ∈ Z>0, and write M = kd . For any A ∈ G := GL(d , k) there
exists T ∈ G such that

T−1AT (q) = 1d .

I.e. any q-semilinear endomorphism on a d-dimensional vector
space over k can be written as diagonal matrix 1d after an
appropriate choice of base.



Proof of the (Hasse-Witt, Lang-Steinberg)-theorem.
Write G = GLd(k).

For any X ∈ G consider fX : G(k)→ G(k) given by
fX (U) = U−1XU(q)

For any U ∈ G(k) consider the induced map on tangent spaces

(dfX )U : tG ,U → tG ,fX (U).

The kernel of this tangential map is the same as the kernel of the
tangential map at U ∈ G(k) defined by U 7→ U−1X ; this last one
is injective, hence (dfX )U is injective, hence an isomorphism.

This shows that the morphism fX has finite geometric fibers. As
G = GLd is an irreducible variety this shows that fX (G) ⊂ G
contains a Zariski-dense open subset for every X ∈ G (k).



We apply this with X = A and with X = 1d , proving

fA(G)(k) ∩ f1d
(G)(k) 6= ∅.

With γ in this intersection we have

Y−1AY (q) = γ = Z−11dZ
(q),

hence
T−1AT (q) = 1d for T = YZ−1.

This proves the theorem.

Impressive. The original proof in 1936 by Hasse-Witt is hard, but
modern algebraic geometry (including the notion Zariski topology)
provides us with an elegant short argument.



(E) Theorem. G(M) ∼=
(
⊕i∈L M ′ui

)⊕(
⊕j∈C Mbwje

)
.

Here L is a finite set of linear words, and C is a finite set of
indecomposable circular words.

We consider the canonical filtration Q∗ = Q∗(M), and we write
G(M) = G(Q∗(M)).

Consider Γ = Γ(Q∗(M)), the directed graph defined by he
saturated flag Q∗. Write

Γ(Q∗(M)) =
⊔
s

Γs ,

a disjoint union of connected graphs. Every Γs is either a linear
graph or a circular graph. Note that G(M) splits accordingly.



Proposition. (a) For one index s, all subquotients in Γs in the
filtration Q∗(M) have the same dimension; write ds for this
dimension.
(b) Suppose Γs is a linear graph; write us for the linear word given
by this directed graph. The corresponding summand of G(M) is
isomorphic with (M ′us )

ds .
(c) Suppose Γs is a circular graph; then the associated circular
word us is indecomposable and the corresponding summand of
G(M) is isomorphic with (Mws )

ds .
Proof. All steps in the flag Q∗(M) associated with Γs are
connected by bijective (semilinear) maps, hence they all have the
same dimension. This proves (a).
Suppose Qj $ Qj+1 is the step in the flag defined by the beginning
of the word us . Choose a k-basis {zs,1,1, · · · , zs,1,ds} for the
k-vector space Qj+1/Qj . Following the word us and using the
semilinear bijections in the saturated Q∗(M) we make bases

{zs,r ,1, · · · , zs,r ,ds | 1 ≤ r ≤ length(us) + 1}
for all subquotients of steps in Q∗(M) associated with us . This
proves (b).



Suppose Qj $ Qj+1 is the step in the flag by one step defined by
the circular word ws . Suppose length(ws) = hs ; write q = phs .
Following the word ws , we have a sequence of semilinear bijective
maps, and we obtain a q-semilinear bijetive endomorphism

ϕ : Qj+1/Qj
∼−→ Qj+1/Qj .

By the (Hasse-Witt, Lang-Steinberg)-theorem we can diagonalize
this map: we choose a basis for Qj+1/Qj on which ϕ is the
identity. From here we follow the proof of (b): follow ws , produce
bases in all steps, finally coming back to the starting step with the
same basis as we started. This proves (c).

Conclusion. This proves

Theorem. G(M) ∼=
(
⊕i∈L M ′ui

)⊕(
⊕j∈C Mbwje

)
.



Discussion

Up to here we have described the decomposition in
indecomposables of G(M).
But does this give information about the same for M?
For every Qj $ Qj+1 we have a canonical map

Qj+1 � Qj+1/Qj ⊂ G(M).

(E) BB Theorem (the splitting isomorphism). These canonical
maps can be splitted in such a way that these give an isomorphism
of Dieudonné modules

M
∼←− G(M) ∼=

(
⊕i∈L M ′ui

)⊕(
⊕j∈C Mbwje

)
.

A proof is not easy (this fact is stated in the preprint by Kraft, but
I cannot find a proof there.) Time permitted, I will show one of
the details.



Corollary. For every indecomposable M ∈M

either ∃u: M ∼= M ′u, or ∃w : M ∼= Mw .

Proof. Choose G(M). This Diedonné module is a direct sum as
indicated above, hence by the isomorphism in the splitting
isomophism theorem we obtain a decomposition of M. As M is
indecomposable there is only one summand, and this is either of
the shape M ′u or of the shape Mw .

Comment. You might complain that this seems a rather
complicated proof. However I do not know a short, simple
argument to prove this corollary. For example: suppose
G(M) ∼= Mw1 ⊕Mw2 ; how do you show that M is decomposable
(moreover in the same way)? This has been solved, but the proof
is somewhat involved.



Perhaps you can work out the general case.

We had the exercise:
4) Choose u = (VFFVF); show P := M ′u is indecomposable.
Let us try. Write z1Vz2Fz3Fz4Vz5Fz6.

z1
V←[ z2

F7→ z3
F7→ z4

V←[ z5
F7→ z6.

Note z2 and z5 are “top elements”; these generate the Dieudonné
module M.

If there is an indecomposable summand P ′ ⊂ P containing z2 and
z5 then P ′ = P.

Otherwise there are two indecomposable summands P ′, and P ′′

both with non-empty intersection with kz2 + kz5. Suppose
bz2 + cz5 ∈ P ′ with b 6= 0 then rank(P ′) ≥ 4 and dz2 + ez5 ∈ P ′′

with e 6= 0 or d 6= 0 then rank(P ′′) ≥ 3. The contradiction
4 + 3 > 6 = rank(P) finishes the proof.

It seems this gives a hint how to prove indecomposablity of any M ′u
directly.



We give rough sketch of one detail of a proof of the splitting
theorem.

Assume Q∗ is refined to a final filtration S∗ of M and suppose a
connected component Γ′ of Γ = Γ(S∗) = Γ(M) is connected with a
linear word u (and steps in the filtration of dimension one). In this
case

M ′u
∼= P ′ ⊂ G(M) can be lifted to a direct summand of M, the

lifting being compatible with the canonical maps

Qj+1 � Qj+1/Qj ⊂ G(M).

First step. Show that in the canonical filtration, starting with
(V−1-F ), all At := F tM appear as submodules in Q∗. Hence the
same holds for a final refinement.



Second step. We construct a lifting G(M) ⊃ M ′u ↪→ M.
Define M ′u by M ′u =

∑
1≤i≤h+1 k·zi . Lift the last zh+1 to yh+1 in

M. Construct {yh, yh−1, · · · , y1} inductively by “following the
word”: where V appears in the word, take the image, where F
appears use the the first step and lift.
Check: this set of elements {yh+1, yh, · · · , y1} ⊂ M constructs the
lifting P ′ ⊂ G(M) we are looking for.

Third step. Use Cartier duality. Check that (M ′u)D = M ′
uD

; here

uD is the word obtained from u by changing F 7→ V and V 7→ F .

Fourth step. Using the second step construct a lifting
G(MD) ⊃ (M ′u)D ↪→ MD (check all compatibilities). This results in
a contraction(

(M ′u)D ↪→ MD
)D

=
(
M ′u ← M = MDD

)
.

This proves M ′u
∼= P ′ ⊂ G(M) can be lifted to a direct summand of

M.



Finale

We have seen:

I A construction of indecomposable modules M ′u and Mw is
easy and direct.

I Then construct the canonical filtration and study properties,
especially the fact that Q∗(M) is saturated.

I Then prove that the associated graded G(M) splits into
indecomposables (not difficult).

I The non-trivial theorem M
∼←− G(M) finishes the proof.

After progressing through all steps indicated we have proved the
theorem that any Dieudonné module M ∈M admits a
decomposition in indecomposable modules:

M ∼=
(
⊕i∈L M ′ui

)⊕(
⊕j∈C Mbwje

)
.



If you want further study, please look at stratifications and
foliations in moduli spaces, and related questions.
References to be found in the notes.

If you have any further questions, do not hesitate to contact me

f.oort@uu.nl

Thank you for your attention.

I thank the organizers for the invitation to give these talks,
I thank Dr Trung Hieu Ngo for assistance in many ways, and
I thank Dr Dao Van Thinh for sharing with me this talk in guiding
you through the exercises.

Wish all of you a nice workshop and a happy future in our
beautiful mathematical profession.


