Étale group scheme

Dao Van Thinh

Hanoi Institute of Mathematics Tuesday 24th October, 2023

2 Étale group scheme over field k

- Characteristic 0 case
- Characteristic p > 0

Étale group scheme over ring R

- Tate, J. (1997). Finite Flat Group Schemes. In: Cornell, G., Silverman, J.H., Stevens, G. (eds) Modular Forms and Fermat's Last Theorem. Springer, New York, NY.
- 2. William C. Waterhouse (1979), Introduction to Affine Group Schemes, Graduate Texts in Mathematics.

Conventions and notations

- k a (perfect) field, $k^{sep} = \bar{k}$ an algebraic closure of k.
- R a noetherian commutative ring

Why do we study étale group scheme?

- Étale group schemes is the case right next to constant group schemes.
- The group of connected components of an algebraic affine group scheme (over a Henselian local ring) is étale.

Our goals today:

- Classify étale group schemes
- See the structure of étale group scheme

Separable algebras

Differentials

Let R be a base ring, A be an R-algebra, and M an A-module. We define the set of derivations from A to M over R as follows:

$$\mathsf{Der}_R(A, M) = \{D : A \to M : R - \mathsf{linear}, D(ab) = aD(b) + bD(a)\}$$

Observe that $D(r) = 0 \ \forall r \in R$, and

$$\operatorname{\mathsf{Der}}_R(A,M)\cong\operatorname{\mathsf{Hom}}_A(\Omega^1_{A/R},M)$$

for a universal object $\Omega^1_{A/R}$ called Kahler differentials.

We define
$$\Omega^1_{A/R}$$
 as
 $\bigoplus_{a \in A} A.da/\langle d(a+b) - da - db; d(ab) - adb - bda, dr \rangle$

Example

If
$$A = R[X_1, \ldots, X_n]/\langle f_i \rangle_i$$
 then

$$\Omega^{1}_{A/R} = \bigoplus_{i=1}^{n} A.dX_{i}/\langle \sum_{j=1}^{n} (\partial f_{i}/\partial X_{j}) dX_{j} \rangle_{i}$$

Example

$$egin{aligned} A &= \mathbb{Z}[i] \cong \mathbb{Z}[X]/(X^2+1) ext{ then} \ &\Omega^1_{A/\mathbb{Z}} = \mathbb{Z}[i] dX/\langle 2X dX
angle \cong \mathbb{Z}[i]/(2i). \end{aligned}$$

By definition, we have a natural map

$$egin{array}{ll} d: \mathcal{A}
ightarrow \Omega^1_{\mathcal{A}/\mathcal{R}} \ a \mapsto da \end{array}$$

satisfying a universal property: any derivation $\sigma: A \to M$ factors through $d: A \to \Omega^1_{A/R}$ uniquely, i.e.,

$$\operatorname{Hom}_{A}(\Omega^{1}_{A/R}, M) \cong \operatorname{Der}_{R}(A, M).$$

Under base change $R \rightarrow S$, the universal property implies that

$$\Omega^1_{(A\otimes_R S)/S}\cong\Omega^1_{A/R}\otimes S.$$

And also,

$$\Omega^1_{(A \times B)/R} \cong \Omega^1_{A/R} \times \Omega^1_{B/R}.$$

Étale algebra

Lemma

Let A be a finite k-algebra. Then (as a k-algebra) A is isomorphic to a finite product A_i of k-algebras each with a unique prime/maximal ideal consisting of nilpotent elements.

Corollary

A finite dimensional k-algebra A is connected (Spec(A) is connected) if and only if A is local.

Definition

A finite k-algebra A is called to be étale if $A = \prod_i k_i$, for $k \subseteq k_i$ finite separable field extensions for all i.

Equivalent definitions of étale algebra

Theorem If A is finite k-algebra, TFAE: (i) A is étale (ii) $A \otimes \bar{k} \cong \bar{k} \times \dots \bar{k}$ (iii) $A \otimes \overline{k}$ is reduced (i.e., has no nilpotent) (iv) $\Omega^1_{A/k} = 0$ (v) $\Omega^1_{(A\otimes \bar{k}/\bar{k})} = 0.$

Proof.

(i) implies (ii) implies (iii) implies (ii) is clear (by the previous lemma). (ii) implies (i): since A has no nilpotent, the structure lemma gives that $A = \prod_i A_i$, where each A_i is a field. Thus, $\operatorname{Hom}_k(A, \overline{k}) = \bigcup_i \operatorname{Hom}_k(A_i, \overline{k})$. By Galois theory and from (iii), we have

$$egin{aligned} & \mathsf{rk}(\mathsf{A}) = |\mathsf{Hom}_k(\mathsf{A},ar{k})| = |igcup_i\mathsf{Hom}_k(\mathsf{A}_i,ar{k})| \ & \leq \sum_i \mathsf{deg}(\mathsf{A}_i/k) = \mathsf{rk}(\mathsf{A}) \end{aligned}$$

The equality holds iff A_i are separable.

cont.

 $(ii) \rightarrow (v) \Leftrightarrow (iv)$ is clear. (v) implies (ii): assume $k = \bar{k}$. Since $\Omega^1_{A/k} = 0$, we implies that $\Omega^1_{A_i/k} = 0$ for all *i*. We will show that $A_i = k$. Write $A_i = k[x_1, \ldots, x_n]/\langle f_i \rangle_i$, then

$$\Omega^1_{A_i/k} = \oplus_i A.dx_i/\langle \sum_{j=1}^n (\partial f_i/\partial x_j) dx_j \rangle_i.$$

Modulo m_i the maximal ideal of A_i we get $0 = m_i/m_i^2$. Thus, $m_i = 0$ by Nakayama's lemma, hence, $A_i = k$.

Galois sets

• Let
$$\pi = \operatorname{Gal}(\overline{k}/k)$$
.

- Give π the standard profinite topology.
- Basis of open subgroups at the identity is $Gal(\bar{k}/L)$, where L is a finite extension of k.
- If X is a set with discrete topology and π acts on X, then this action is called continuous if for all x ∈ X, Stab_π(x) is open in π. Equivalently, for every point x ∈ X, there is some finite extension L of k with Gal(k/L) acting trivially.

We have a functor:

 $\{\text{finite \'etale algebras}\} \rightarrow \{\text{finite continuous } \pi-\text{sets}\}$ $A \mapsto \text{Hom}_k(A, \bar{k})$

with $\sigma \in \pi$ acting on $f : A \to \overline{k}$ by

$$\sigma(f)(a) = \sigma(f(a)).$$

Theorem

The above functor defines an equivalence of categories. The inverse functor is given by

$$Y\mapsto {\it Map}_{\pi}(Y,ar{k})$$

Proof.

- The above action of π on Hom_k(A, k̄) is continuous since the image of each f : A → k̄ lies in some finite extension of k.
- For each continuous π−set Y, A_Y = Map_π(Y, k̄) is a ring using pointwise operations in k̄, and a k−algebra via the embedding sending each r ∈ k to the constant function on Y with value r.
- Want to show that A_Y is a finite étale k−algebra. Enough to show this for Y₁ ⊂ Y a transitive π−set. Because if this is separable, then A_Y = A_{Y1⊔···□Yt} = A_{Y1} × ··· × A_{Yt} is separable too.

cont.

- As Y_1 has continuous action of π and is finite, for any $y_1 \in Y_1$, there is some galois L/k with $H = Stab_{\pi}(y_1) \supset Gal(\bar{k}/L)$ acting trivially on y_1 and hence Y_1 .
- Thus for all f ∈ A_{Y1}, y ∈ Y1, and γ ∈ Gal(k/L), we have γ(f(x)) = f(x), so f(x) ∈ L.
- Claim: $L^H \cong A_{Y_1}$, so A_{Y_1} is a separable field extension of k.
- Note that f ∈ A_{Y1} is determined by its value on y1 : this is because π acts on Y1 transitively. Moreover, f(y1) ∈ L^H.

Étale group scheme over field k

Étale group scheme

Definition

A finite group scheme G = Spec(A) is called étale if A is étale.

We also have an equivalence:

Theorem

Finite étale group schemes over k are anti-equivalent to finite groups with a continuous action of π by group automorphisms.

Proof.

- A finite étale group scheme Spec(A) induces a group structure naturally on Hom_k(A, k̄) that is compatible with the group action.
- Conversely, if Y is in fact a group with a continuous group action of π, then A_Y has Hopf algebra structure:
 - Comultiplication: $\Delta(f)(x, y) = f(xy)$, viewing $A_Y \otimes A_Y$ as the space of functions $Y \times Y \to \overline{k}$.
 - Counit: $\epsilon(f)(x) = f(1)$.
 - Antipode: $S(f)(x) = f(x^{-1})$.

Example

- A finite group X with trivial action of π corresponds to the constant group scheme associated to X.
- Thus, if k is algebraically closed, then the finite étale group schemes over k are exactly the constant group schemes of finite groups.

Example

- Let k = ℝ so k
 = C. Then to which finite group and action of C₂ = Gal(C/ℝ) does μ₃ (represented by ℝ[X]/(X³ − 1)) correspond?
- Write ω for a non-trival third root of unity in C. Then Hom_ℝ(ℝ(ω), C) has three elements so is C₃.
- One can see immediately that this is not the constant group scheme C₃, as μ₃ has only one real point. The action of C₂ by swapping the generators.

Cartier's theorem in characteristic 0

Theorem

If k is a field of characteristic 0, then every finite group scheme is étale.

The proof uses Kahler differentials, and here is what we need:

Proposition

If R is a noetherian ring and A is an Hopf algebra over R, G = Spec(A), then

$$\Omega^1_{A/R}\cong A\otimes_R (I/I^2),$$

where I is the augmentation ideal $Ker(A \xrightarrow{e} R)$.

Let I = Ker(e) and x_1, \ldots, x_n be a basis of I/I^2 . Then

$$\lim_{\leftarrow} A/I^n = A/\cap_n I^n =: A/J.$$

Since $A = \prod_i A_i$ with (A_i, m_i) local, m_i nilpotent, we see that J is a direct factor of A as k-algebra. Thus,

$$A/J \cong k[x_1,\ldots,x_n]/\langle f_i \rangle_i$$

and $A \cong A/J \times A/J'$ for some J'.

cont.

By the proposition, we have

$$\Omega^{1}_{A/k} \cong A \otimes_{k} I/I^{2}$$
$$\cong \bigoplus_{i=1}^{n} A.dx_{i}$$
$$\cong \Omega^{1}_{(A/J)/k} \times \Omega^{1}_{(A/J')/k}.$$

This implies that

$$\Omega^1_{(A/J)/k} \cong \bigoplus_{i=1}^n (A/J) dx_i / \langle \sum_j (\partial f_i / \partial x_j) dx_j \rangle_i$$

 $\cong \bigoplus_{i=1}^n (A/J) dx_i$

So if $f \in J$ then $\partial f / \partial x_i \in J$ for all *i*. Since char(k) = 0, this implies that all coefficients of *f* is in *J*, thus, they are 0. So $A/J \cong k[x_1, \ldots, x_n]$ and n = 0 since it is finite k-algebra. We conclude that $I/I^2 = 0$ hence $\Omega^1_{A/k} = 0$.

Definition (Local group scheme)

G = Spec(A) is called local group scheme if G is a group scheme for which the base ring R is local and A is a local algebra over R.

Theorem

If k is a perfect field of characteristic p > 0, G = Spec(A) a finite local group scheme over k, then

$$A \cong k[x_1, \cdots, x_n]/\langle x_1^{p^{e_1}}, \ldots, x_n^{p^{e_n}} \rangle.$$

Proof.

See Waterhouse (Section 14.4).

Étale group scheme over ring R

Definition

If *R* is a connected noetherian base ring, and *G* a finite R-group scheme, then G = Spec(A) is étale if it is flat (locally free) and $A \otimes_R k$ is étale for any residue field $R \rightarrow k \rightarrow 0$.

Note that A over R is étale iff $\Omega^1_{A/R} = 0$ and A is flat.

Remark

If $K \subset L$ is a finite extension of number fields, then \mathcal{O}_L is an étale \mathcal{O}_K -algebra iff L/K is unramified.

Grothendieck's theorem

- Take a geometric point of Spec(R) :
 α : Spec(k^{sep}) → Spec(R) from R → k → k^{sep}.
- Define a functor:
 - $F: \{\text{finite étale affine R-schemes}\} \rightarrow \{\text{finite sets}\}$ $X = Spec(A) \mapsto \text{Hom}_R(A, k^{sep}).$
- Set π = Aut(F) the group of automorphisms of the functor F. We call it the fundamental group of R at the geometric point α.
- π is a profinite group, and it equals $Gal(k^{sep}/k)$ if R = k.

Theorem

The functor F induces an equivalence

{finite étale affine R-schemes} \leftrightarrow {finite cont. π -sets}.

And if we restrict to the group schemes, we have an equivalence:

{finite étale affine group R-schemes} \leftrightarrow {finite groups with continuous action of π }

Example

- Let S be a finite set of primes of a number field F. Let R = O_S the ring of S−integers, i.e., R consists of elements which are integral at every primes p ∉ S. Then π = Gal(L/F) where L is the maximal algebraic extension of F unramified at primes outside S.
- As above and $S = \emptyset$, then $\pi(\mathbb{Z}) = 1$ by Minkowski (there are no unramified extensions of \mathbb{Q}).
- $S = \emptyset$, $\pi(\mathbb{Z}[\sqrt{-5}]) = \mathbb{Z}/2\mathbb{Z}$, and the unramified extension is $\mathbb{Z}[\sqrt{-5}] \subset \mathbb{Z}[i, (\sqrt{-5}+i)/2]$

- Take R = Z[√-5] so π ≃ Z/2Z. Question: find G = Spec(A) an étale group scheme over R of order 3 with non-trivial action by π.
- We will find A of the form $R[X]/\langle X^3 + aX^2 + cX \rangle$. Since A is étale, c is unit. Let discriminant be -1, we have $a = \sqrt{-5}$ and c = -1. So $A = R[X]/\langle X^3 + \sqrt{-5}X^2 - X \rangle$ with three points $0, \frac{-\sqrt{-5} \pm i}{2}$.
- The multiplication law:

$$X\mapsto X+X'+aXX'+b(X^2X'+XX'^2)+c(X^2X'^2)$$

for certain $a, b, c \in R$. We find that: $a = 3\sqrt{-5}, b = 6, c = -2\sqrt{-5}.$

Theorem (Tate)

Every finite flat R-group scheme G whose order [G : R] is invertible on R is étale.