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Conventions and notations

k a (perfect) field, k sep = k̄ an algebraic closure of
k .

R a noetherian commutative ring
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Motivation

Why do we study étale group scheme?

Étale group schemes is the case right next to
constant group schemes.

The group of connected components of an algebraic
affine group scheme (over a Henselian local ring) is
étale.
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Goals

Our goals today:

Classify étale group schemes

See the structure of étale group scheme
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Separable algebras
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Differentials

Let R be a base ring, A be an R−algebra, and M an
A−module. We define the set of derivations from A to
M over R as follows:

DerR(A,M)

={D : A→ M : R − linear, D(ab) = aD(b) + bD(a)}

Observe that D(r) = 0 ∀r ∈ R , and

DerR(A,M) ∼= HomA(Ω1
A/R ,M)

for a universal object Ω1
A/R called Kahler differentials.
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Kahler differentials

We define Ω1
A/R as⊕

a∈A

A.da/〈d(a + b)− da − db; d(ab)− adb − bda, dr〉

Example
If A = R[X1, . . . ,Xn]/〈fi〉i then

Ω1
A/R =

n⊕
i=1

A.dXi/〈
n∑

j=1

(∂fi/∂Xj)dXj〉i
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Example
A = Z[i ] ∼= Z[X ]/(X 2 + 1) then

Ω1
A/Z = Z[i ]dX/〈2XdX 〉 ∼= Z[i ]/(2i).

By definition, we have a natural map

d : A→ Ω1
A/R

a 7→ da

satisfying a universal property: any derivation
σ : A→ M factors through d : A→ Ω1

A/R uniquely, i.e.,

HomA(Ω1
A/R ,M) ∼= DerR(A,M).
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Properties of Ω1

Under base change R → S , the universal property
implies that

Ω1
(A⊗RS)/S

∼= Ω1
A/R ⊗ S .

And also,
Ω1

(A×B)/R
∼= Ω1

A/R × Ω1
B/R .
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Étale algebra

Lemma
Let A be a finite k−algebra. Then (as a k−algebra) A is
isomorphic to a finite product Ai of k−algebras each
with a unique prime/maximal ideal consisting of
nilpotent elements.

Corollary
A finite dimensional k−algebra A is connected (Spec(A)
is connected) if and only if A is local.

Definition
A finite k−algebra A is called to be étale if A =

∏
i ki ,

for k ⊆ ki finite separable field extensions for all i .
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Equivalent definitions of étale algebra

Theorem
If A is finite k−algebra, TFAE:

(i) A is étale

(ii) A⊗ k̄ ∼= k̄ × . . . k̄
(iii) A⊗ k̄ is reduced (i.e., has no nilpotent)

(iv) Ω1
A/k = 0

(v) Ω1
(A⊗k̄/k̄ = 0.
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Proof.
(i) implies (ii) implies (iii) implies (ii) is clear (by the
previous lemma).
(ii) implies (i): since A has no nilpotent, the structure
lemma gives that A =

∏
i Ai , where each Ai is a field.

Thus, Homk(A, k̄) =
⋃

i Homk(Ai , k̄). By Galois theory
and from (iii), we have

rk(A) = |Homk(A, k̄)| = |
⋃
i

Homk(Ai , k̄)|

≤
∑
i

deg(Ai/k) = rk(A)

The equality holds iff Ai are separable.
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cont.
(ii)→ (v)⇔ (iv) is clear.
(v) implies (ii): assume k = k̄ . Since Ω1

A/k = 0, we

implies that Ω1
Ai/k

= 0 for all i . We will show that

Ai = k . Write Ai = k[x1, . . . , xn]/〈fi〉i , then

Ω1
Ai/k

= ⊕iA.dxi/〈
n∑

j=1

(∂fi/∂xj)dxj〉i .

Modulo mi the maximal ideal of Ai we get 0 = mi/m
2
i .

Thus, mi = 0 by Nakayama’s lemma, hence, Ai = k .
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Galois sets

Let π = Gal(k̄/k).

Give π the standard profinite topology.

Basis of open subgroups at the identity is Gal(k̄/L),
where L is a finite extension of k .

If X is a set with discrete topology and π acts on X ,
then this action is called continuous if for all x ∈ X ,
Stabπ(x) is open in π. Equivalently, for every point
x ∈ X , there is some finite extension L of k with
Gal(k̄/L) acting trivially.
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We have a functor:

{finite étale algebras} → {finite continuous π−sets}
A 7→ Homk(A, k̄)

with σ ∈ π acting on f : A→ k̄ by

σ(f )(a) = σ(f (a)).

Theorem
The above functor defines an equivalence of categories.
The inverse functor is given by

Y 7→ Mapπ(Y , k̄)
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Proof.
The above action of π on Homk(A, k̄) is continuous
since the image of each f : A→ k̄ lies in some finite
extension of k .

For each continuous π−set Y , AY = Mapπ(Y , k̄) is
a ring using pointwise operations in k̄ , and a
k−algebra via the embedding sending each r ∈ k to
the constant function on Y with value r .

Want to show that AY is a finite étale k−algebra.
Enough to show this for Y1 ⊂ Y a transitive π−set.
Because if this is separable, then
AY = AY1t···tYt

= AY1
× · · · × AYt

is separable too.
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cont.
As Y1 has continuous action of π and is finite, for
any y1 ∈ Y1, there is some galois L/k with
H = Stabπ(y1) ⊃ Gal(k̄/L) acting trivially on y1

and hence Y1.

Thus for all f ∈ AY1
, y ∈ Y1, and γ ∈ Gal(k̄/L), we

have γ(f (x)) = f (x), so f (x) ∈ L.

Claim: LH ∼= AY1
, so AY1

is a separable field
extension of k .

Note that f ∈ AY1
is determined by its value on y1 :

this is because π acts on Y1 transitively. Moreover,
f (y1) ∈ LH .
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Étale group scheme over field k
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Étale group scheme

Definition
A finite group scheme G = Spec(A) is called étale if A is
étale.

We also have an equivalence:

Theorem
Finite étale group schemes over k are anti-equivalent to
finite groups with a continuous action of π by group
automorphisms.
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Proof.
A finite étale group scheme Spec(A) induces a
group structure naturally on Homk(A, k̄) that is
compatible with the group action.
Conversely, if Y is in fact a group with a continuous
group action of π, then AY has Hopf algebra
structure:

Comultiplication: ∆(f )(x , y) = f (xy), viewing AY ⊗ AY

as the space of functions Y × Y → k̄ .
Counit: ε(f )(x) = f (1).
Antipode: S(f )(x) = f (x−1).
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Example
A finite group X with trivial action of π corresponds
to the constant group scheme associated to X .

Thus, if k is algebraically closed, then the finite
étale group schemes over k are exactly the constant
group schemes of finite groups.
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Example

Let k = R so k̄ = C. Then to which finite group
and action of C2 = Gal(C/R) does µ3 (represented
by R[X ]/(X 3 − 1)) correspond?

Write ω for a non-trival third root of unity in C.
Then HomR(R(ω),C) has three elements so is C3.

One can see immediately that this is not the
constant group scheme C3, as µ3 has only one real
point. The action of C2 by swapping the generators.
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Cartier’s theorem in characteristic 0

Theorem
If k is a field of characteristic 0, then every finite group
scheme is étale.

The proof uses Kahler differentials, and here is what we
need:

Proposition
If R is a noetherian ring and A is an Hopf algebra over
R , G = Spec(A), then

Ω1
A/R
∼= A⊗R (I/I 2),

where I is the augmentation ideal Ker(A
e−→ R).
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Proof of Cartier theorem

Let I = Ker(e) and x1, . . . , xn be a basis of I/I 2. Then

lim
←

A/I n = A/ ∩n I n =: A/J .

Since A =
∏

i Ai with (Ai ,mi) local, mi nilpotent, we see
that J is a direct factor of A as k−algebra. Thus,

A/J ∼= k[x1, . . . , xn]/〈fi〉i

and A ∼= A/J × A/J ′ for some J ′.
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cont.

By the proposition, we have

Ω1
A/k
∼= A⊗k I/I

2

∼=
n⊕

i=1

A.dxi

∼= Ω1
(A/J)/k × Ω1

(A/J ′)/k .

This implies that

Ω1
(A/J)/k

∼=
n⊕

i=1

(A/J)dxi/〈
∑
j

(∂fi/∂xj)dxj〉i

∼=
n⊕

i=1

(A/J)dxi
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cont.

So if f ∈ J then ∂f /∂xi ∈ J for all i . Since char(k) = 0,
this implies that all coefficients of f is in J , thus, they
are 0. So A/J ∼= k[x1, . . . , xn] and n = 0 since it is finite
k−algebra. We conclude that I/I 2 = 0 hence Ω1

A/k = 0.
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Definition (Local group scheme)
G = Spec(A) is called local group scheme if G is a
group scheme for which the base ring R is local and A is
a local algebra over R .

Theorem
If k is a perfect field of characteristic p > 0,
G = Spec(A) a finite local group scheme over k , then

A ∼= k[x1, · · · , xn]/〈xp
e1

1 , . . . , xp
en

n 〉.

Proof.
See Waterhouse (Section 14.4).
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Étale group scheme over ring R
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Definition
If R is a connected noetherian base ring, and G a finite
R−group scheme, then G = Spec(A) is étale if it is flat
(locally free) and A⊗R k is étale for any residue field
R → k → 0.

Note that A over R is étale iff Ω1
A/R = 0 and A is flat.

Remark
If K ⊂ L is a finite extension of number fields, then OL is
an étale OK−algebra iff L/K is unramified.
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Grothendieck’s theorem

Take a geometric point of Spec(R) :
α : Spec(k sep)→ Spec(R) from R � k → k sep.

Define a functor:

F : {finite étale affine R-schemes} → {finite sets}
X = Spec(A) 7→ HomR(A, k sep).

Set π = Aut(F ) the group of automorphisms of the
functor F . We call it the fundamental group of R at
the geometric point α.

π is a profinite group, and it equals Gal(k sep/k) if
R = k .
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Grothendieck’s theorem

Theorem
The functor F induces an equivalence

{finite étale affine R−schemes} ↔ {finite cont. π−sets}.

And if we restrict to the group schemes, we have an
equivalence:

{finite étale affine group R−schemes}
↔{finite groups with continuous action of π}
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Example
Let S be a finite set of primes of a number field F .
Let R = OS the ring of S−integers, i.e., R consists
of elements which are integral at every primes
p /∈ S . Then π = Gal(L/F ) where L is the maximal
algebraic extension of F unramified at primes
outside S .

As above and S = ∅, then π(Z) = 1 by Minkowski
(there are no unramified extensions of Q).

S = ∅, π(Z[
√
−5]) = Z/2Z, and the unramified

extension is Z[
√
−5] ⊂ Z[i , (

√
−5 + i)/2]
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Take R = Z[
√
−5] so π ∼= Z/2Z. Question: find

G = Spec(A) an étale group scheme over R of
order 3 with non-trivial action by π.

We will find A of the form R[X ]/〈X 3 + aX 2 + cX 〉.
Since A is étale, c is unit. Let discriminant be −1,
we have a =

√
−5 and c = −1. So

A = R[X ]/〈X 3 +
√
−5X 2 − X 〉 with three points

0, −
√
−5±i
2 .

The multiplication law:

X 7→ X + X ′ + aXX ′ + b(X 2X ′ + XX ′2) + c(X 2X ′2)

for certain a, b, c ∈ R . We find that:
a = 3

√
−5, b = 6, c = −2

√
−5.
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Theorem (Tate)
Every finite flat R−group scheme G whose order [G : R]
is invertible on R is étale.
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