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Introduction

We study the Lyapunov spectrum of the linear system
dx; = A(t)x:dt + C(t)x:dB!, xo € R?,t >0, (1)

where A, C are continuous matrix valued functions and B" is a one dimensional
fBm with H € (3,1), i.e. a centered continuous Gaussian process with
covariance function

1
Ru(s,t) = s (It +[s| — |t = s"), s, t € R.

(1) is understood in the integral form

t t
Xe = X0 +/ A(s)xsds + / C(s)xsdBl' | xo e R%.
0 0

Riemann intergral pathwise Young integral
Young integral : [ F(u)dg(u) = fim 3= A€ le(tii) — ()]
a [n|—o
tieNla,b]

is well defined if f € CP~V"([a, b], R*™) and g € CT™¥*([a, B],R™), L + 1 > 1 (Young, 1938).



Introduction

Mandelbrot and Van Ness's representation:

Bl .~ i/[(t— u) VO] E — [(—u) v O] aW.
CH Jr

Canonical space for fBm
> (Q,F)=(C¥P ™ (R,R), B) > Wiener shift: (0:w). = wey. — we

> Py = B"P; > Bl (w) = w:

(92, F,Pn, 0) is an ergodic metric dynamical system (see [11]).

Due to the ergodicity, the following estimates hold for almost all w € Q.

1 n—1
d HI'J'QO ; z :lel||£—var,[k,k+1] = rz
neN k=0
o lim e’ ~0

n—oo n P*Vﬁrv["an+1] :
neN



Introduction

» Multiplicative ergodic theorem (MET) by Oseledets [24] and.
As the same time it was also investigated by Millionshchikov
in [17, 18, 19, 20] for linear nonautonomous differential
equations.

» In the stochastic setting: MET is investigated in [1], further
study [6, 7] for stochastic flows generated by nonautonomous
linear SDE driven by standard Brownian motion.



Existence and uniqueness theorem

Lemma 1 (Gronwall-type Lemma)
Let 1 < p < q be arbitrary and satisfy % + % > 1. Assume that
w € CP¥ ([0, T],R) and y € CT ¥ ([0, T],RY) satisfy

t t
/ yudu / Yudwy

for some fixed control function A on A[0, T] and some constants a1, a» > 0.
Then for every u,v € [0, T], u < v,

|Yt*)/s\ SAi,/tq‘i'al + a2 ’ VS,tG [Oa T]a s < ta

q—1

rN,| q
1y lg—var (o] < [\yu|+2A Iy, V]M(w)} 2ol NN ()

K*+2
K*+1

where K* = —1—, k = log and
q

1-2 P

N u(@) <1+ [2a2(K™ + 1)]° [l

p—var,[u,v] *



Existence and uniqueness theorem

Theorem 2
Assume that A € C([0, T],R?*9), C € ¢~ ([0, T],RY*?) with ¢ > p and
% + % > 1. Then equation

dx; = A(t)xedt + C(t)xedw:, x0 € R, t € Ry
has a unique solution in the space CP~V*'(R, R?) which satisfies

D[LH|All oo a6 (b= )+ C1°

P
g—var,a,5 1<l

X[l p-var fan) < |x:|e pverionll [a, b] C Ry

Proof - Define F(x); := xa + [ A(s)xsds + [} C(s)xsdws. Then

1A = Y lpvargor € M (£ =5+ Bollyar o) 1% = Yllavar:

- F is a contraction mapping on a closed ball in C97Y*"([7%, Tk+1], R?) where

(15D
1

Tk — Tk—1 + |”wH|p—var,[Tk7177'k] - W

= local solutions = global solution.



Stochastic two-parameter flow generation

AssumptiAons
(i) (H1) A= Al z, < oc.

(i) (H2) € = [|Cllgvarom, == sup [ICllg—var,[s,g < 00
0<t—s<§

Theorem 3
Suppose that (H1), (H2) are satisfied then equation

dx; = A(t)xedt + C(t)xdBH, xg e R, t >0,

generates a stochastic two-parameter flow of linear operators of RY
onR,.



Exponents and spectrum

Definition 4 ([6])

(/) Given a stochastic two-parameter flow ®. ;(w) of linear operators of R on
[to, 00),

M(w) = inf sup lim %Iog\¢t,t0(w)y|, k=1,...,d, (2)

VEGy_kt1 yev t—=0

are called Lyapunov exponents of the flow ®; (w). The collection
{A1(w), ..., Ad(w)} is called Lyapunov spectrum of the flow ®; s(w).
(ii) For any u € [to,0) the linear subspaces of R?

y — 1
El(w):={y eR?| Jim = log |®¢u(w)y| < M)}, k=1,....d, (3)

are called Lyapunov subspaces at time u of the flow ®; (w). The flag of
nonincreasing linear subspaces of R?

R? = E{(w) D Ef(w) D --- D EJ(w) D {0}

is called Lyapunov flag at time u of the flow ®; (w).



Exponents and spectrum

Proposition 5
(i) The Lyapunov exponents A\g(w), k =1,...,d are measurable

(ii) For any u € [tg, 00), the Lyapunov subspaces E/'(w),
k=1,...,d, of & s(w) are measurableand invariant with respect
to the flow in the following sense

¢ s(w)Ef (w) = Ef(w), for all s, t € [tg,0),w € A, k=1,...,d.



Exponents and spectrum

Theorem 6

Let &, s(w) be the flow generated by (3) and {\1(w), ..., A\d(w)} be the
Lyapunov spectrum of the flow ®; s(w) hence of the equation (3). Then under
assumption (Hi1), (Hz), the Lyapunov exponents A (w),k =1,...,d, can be
computed via a discrete-time interpolation of the flow, i.e.

M) =  inf sup iim %Iog\¢m0(w)y|, k=1,....d. (4

VeGy_k+1 yev N3t—oo
Morever, the spectrum is bounded by a constant, namely

(@) € 14+ Mo(1+T5), k=1,....d, (5)

Corollary 7 (Integrability condition)
Under the assumptions (H1) and (H.), ®.s(w) satisfies the following
integrability condition

E  sup logh||®es(w)tY <1+ M0(1 + rg), Vio > 0. (6)

to<s<t<ty+1



Lyapunov spectrum of triangular systems

Recall the classical definition of Lyapunov exponent for h: R, — R:

1 1
X(he) := lim — log|he|.

Lemma 8
Assume that ¢ := ||c||g—var,s,r, < 00. Then

X(t,w) = /t c:dBl (w)

0

t H
exists for all t € R, and satisfies lim X&2) — |im w =0, as.
t

— 00 t—o00
Proof
- X(t,.) ~ N(0,0?) with o < 3t?".
—FixO<5<1—Handk2(lT17H)wehave

o |X(f7,)| 1 = EX(nv')Zk
ZP( > ) <3 e <o

- Using Borel-Caltelli lemma, X)) 5 0asn— 0o as.

n



Indefinitely Young integral

Lemma 9
Consider Gy = fot gsdws, where g is of bounded q—variation
function on every compact interval. If

x(&t), X(I&llg—var [t,e417) < A € [0, +00) then

X(Ge)s XUNGllg—var e e41)) < A

Lemma 10

Let g be of bounded q—variation function on every compact
interval, satisfying x(8¢). X(1&llq_var r.s11) < —A € (=0,0)
then Gy = [~ g(s)dw(s) exist for all t € Ry and

X(Ge)s XU Gllg—var e, e41)) < =2



Lyapunov spectrum of triangular systems

Consider the system

in which, X = (x1, x2, ..., x4), A(t) = (a¥(t)), C(t) = (c¥(t)) are
upper triangular matrices of coefficient functions.

Theorem 11
Under assumptions (H1) — (H2), if there exist the exact limits

t—oo t

1 t
Ak = lim / a(s)ds, k=1,d
0
then the spectrum of system (7) is given by

{51175227 e 7§dd}'



Proof of Theorem 13

The solution of non-homogeneous one dimensional linear equation

dx; = [a(t)xe + h*(t)]dt + [c(t)x: + h?(t)]dw;

is
Xy = efot a(s)ds+f0t c(s)dws «
t o \
: (XO +/ e sl el il (s)ds + / e J5 2[5 clw)deu 2 (5l
0 0 /

- Construct a fundamental solution matrix X(t) = (xt'j) of (7) satisfies

d
i 1
X(X{) = i, 25,'; = [lim n log | det X(t)]
i=1

in which X; is the column it" of X.

Then X(t) is a normal matrix solution to (7).



Lyapunov regularity

Definition 12 ([1])

Let ®;s(w) be a two-parameter flow of linear operators of R and
{M(w), ..., Ad(w)} be the Lyapunov spectrum of &, (w). Then the
non-negative R-valued random variable

- 1
Z — lim = log|det ®;o(w)|
k=1 tvoo

is called coefficient of nonregularity of the two-parameter flow ®; s(w).

A two-parameter flow is called Lyapunov regular if its coefficient of
nonregularity equals 0 identically. A linear YDE is called Lyapunov regular if its
coefficient of nonregularity equals 0.



Lyapunov regularity

Assume more
(H}) lim sup |A(t) — A(s)| = 0.
=0 |t—s|<s

: C(t) — C(s)l
H%) lim su ‘7:O,a>1—f
( 2)5~>0 _o<|;<s<2<50e, |t — S|D‘

Follow [19], [20] (see also [12], [25], [26]) we construct the so-called Bebutov
flow from (1).

Consider the shift dynamical system

SHA)) = AC+1), ST(C)() = C(-+1)

» The hull H* := U;S:(A) in C® is compact (see e.g. [13]),

> The hull HE := U,S:(C) in &>~ HN R, R¥*9) is compact where
oo~ Hel(R RKY is the space of paths in C%*~H°l(J R¥*9) for each
compact interval | C R with metric

dux,y) == 3 5 (lx — ]

m>1

a[=m,m] A 1).



Almost sure Lyapunov regularity

By Krylov-Bogoliubov theorem, there exists at least one probability
measure p?, 1€ on HA, HC that is invariant under , SA, S€ respectively.
Construct

» the product probability space B = HA x HC x Q
» the product sigma field FA x F¢ x F,
» the product measure pf = A x pu¢ x P

» the product dynamical system @ = S” x S¢ x @ given by

0:(A, €,w) := (SA(A), 5£(C), buw).



Almost sure Lyapunov regularity

Now for each point b = (A, ,w) € B, the fundamental (matrix) solution
®*(t, b) of the equation

dx; = A(t)xedt + C(t)xedw:, xp € R, (8)

defined by ®*(t, b)xo := x; with x; being the value at t of the solution
x(+) which starts at xp at time 0.

Theorem 13
¢* : R x B x RY — R defines a RDS over the metric DS (B, 1%, ©).

Theorem 14 (Millionshchikov theorem)

Under assumptions (Hy), (Hy) (H}), (H}) equation (8) is Lyapunov
regular a.s. in the sense of 2.



Proof of Theorem 16
Proof
- ®* satisfies the cocycle property

Xtts = Xo+/ /Z\(u)xudu—i—/ C(u)x,dw,
0 0
t+s t+s
—|—/ A(u)x,_,du—i—/ C(u)xudwy

t t
xs + / SAAY(u)xursdu + / SE(C)(u)XyrsdOsews.
0 0

- Consider b' = (A, C',w') € B and the equation

dxi = Al(t)xtldt—l— Cl(t)xtldw:, xo = x € R,

For z: = x} — x¢, t € R we have

t
|lz: —z| <

( Zudu+/ C Zudw,_, .

/ A (u) — A(u)]xidu + / E (- wi) / [EX(u) — E(u)lxidu?

Then

22| < D [|z0] + 14" = Alloc. + da(€7, €) + d(o, )]
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