Partial universality of the superconcentration in the Sherrington-Kirkpatrick's spin glass model

Van Quyet Nguyen

This is a joint work with V. H. Can and H. S. Vu

Graduate School on Mathematics of Random Systems: Analysis, Modelling and Algorithms

September 8, 2021

Spin glass

In physics: materials that particles have magnetic interaction with each other, consist of both ferromagnetic and anti-ferromagnetic interactions.

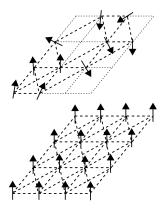


Figure: The spin (arrow) structure of a ferromagnet (bottom) and a spin glass (top) [source: wiki].

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Spin glass

In physics: materials that particles have magnetic interaction with each other, consist of both ferromagnetic and anti-ferromagnetic interactions.

Edwards-Anderson model (1975):

- Consider a finite sub-graph (V, E) of Z^d, each vertex places the spin +1 ('up') or −1 ('down')
- ▶ Hamiltonian (magnetic energy) of $\sigma \in \{+1, -1\}^V$,

$$H_{y}(\sigma) := \sum_{(i,j)\in E} y_{ij}\sigma_{i}\sigma_{j},$$

where $y = (y_{ij})_{(i,j) \in E}$ are i.i.d. random variables, called the disorders, with $\mathbb{E}[y] = 0$, $\operatorname{Var}[y] = 1$.

 Magnetic interaction: y_{ij} > 0 : ferromagnetic ; y_{ij} < 0 : anti-ferromagnetic

Spin glass

In physics: materials that particles have magnetic interaction with each other, consist of both ferromagnetic and anti-ferromagnetic interactions.

Sherrington-Kirkpatrick model (1975):

• Hamiltonian (magnetic energy) of $\sigma = (\sigma_1, \ldots, \sigma_N) \in \Sigma_N$,

$$H_{y}(\sigma) := \frac{1}{\sqrt{N}} \sum_{1 \leq i < j \leq N} y_{ij} \sigma_{i} \sigma_{j}$$

here $\Sigma_N = \{+1, -1\}^N$ is called the state space.

 Mean-field model: ignores the geometry of lattice, replaces by complete graph

(日)(1)

Sherrington-Kirkpatrick model (contd.)

▶ Gibbs measure at temperature *T*,

$$G_y(\sigma) := rac{\exp(eta H_y(\sigma))}{Z_y(eta)},$$

where $\beta = \frac{1}{T}$ which is called the inverse temperature and

$$Z_y(eta) := \sum_{\sigma \in \mathbf{\Sigma}_N} \exp(eta H_y(\sigma))$$

is normalizing constant or the partition function.Free energy,

$$F_y := F_y(\beta) := \log Z_y(\beta)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sherrington-Kirkpatrick model (contd.)

Gibbs measure at temperature T,

$$G_y(\sigma) := rac{\exp(eta H_y(\sigma))}{Z_y(eta)},$$

where $\beta = \frac{1}{T}$ which is called the inverse temperature and

$$Z_y(eta) := \sum_{\sigma \in \Sigma_N} \exp(eta H_y(\sigma))$$

is normalizing constant or the partition function.

Free energy,

$$F_y := F_y(\beta) := \log Z_y(\beta)$$

Motivating questions:

- What are the values of quantities: E[F_y(β)], Var[F_y(β)]? or the typical structure of G_y?
- Universality: should statistical quantities and properties not depend on particular distribution of disorders?

Parisi solution

Physical prediction: A beautiful structure for S-K model that we call the Parisi solution.

► Two major pieces in the Parisi solution are known rigorously. Gaussian disorders: $y = g \sim \mathcal{N}(0, 1)$:

Parisi formula

Theorem (Talagrand, AoM 2006)

$$\lim_{N\to\infty}\frac{1}{N}\mathbb{E}[F_g] = \alpha_{\infty}$$

▶ Parisi ultrametricity of G_y proved by Panchenko, AoM (2013)

Parisi solution

- Physical prediction: A beautiful structure for S-K model that we call the Parisi solution.
- Two major pieces in the Parisi solution are known rigorously.

Beyond Gaussian disorders (Universality):

Key idea: Using interpolation method (exception of Y. Chen)

Superconcentration in Gaussian disorders

Named by Chaterjee (2008), the phenomenon that *classical inequalities give sub-optimal bounds on the order of fluctuation*.

- ► Happened in many physical models. Ex: Gaussian polymer, FPP, Gaussian fields, ...
- Superconcentration in general setting is constructed by the tool of Markov semigroup analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Sublinearity of variance is a typical expression of the superconcentration

Superconcentration in Gaussian disorders

Named by Chaterjee (2008), the phenomenon that *classical inequalities give sub-optimal bounds on the order of fluctuation*.

- ► Happened in many physical models. Ex: Gaussian polymer, FPP, Gaussian fields, ...
- Superconcentration in general setting is constructed by the tool of Markov semigroup analysis
- Sublinearity of variance is a typical expression of the superconcentration

In S-K model:

- ▶ By Gaussian Poincaré inequality, $Var[F_g] \leq C(\beta)N$
- Superconcentration of free energy,

Theorem (Chaterjee, monograph 2014)

 $\mathsf{Var}[F_g] \leq C(\beta) N / \log N$

What is chaos?

- Continuous *t*-perturbed disorders: $g_{ij}^t = e^{-t}g_{ij} + \sqrt{1 e^{-2t}g_{ij}'}$ where g_{ij}' is i.i.d. $\sim g_{ij} \sim \mathcal{N}(0, 1)$
- ▶ When $t \simeq 0$, we say that perturbation is small
- Given function *h* on $\Sigma_N \times \Sigma_N$, we define,

$$\langle h \rangle_{0,t} = \sum_{\sigma^0, \sigma^t} h(\sigma^0, \sigma^t) G_{0,t}(\sigma^0, \sigma^t)$$

where $G_{0,t}$ is the product measure of original and *t*-perturbed Gibbs measure.

• Chaotic phenomenon: under $t \simeq 0$: $\sigma^0 \perp \sigma^t$

Theorem (Chaterjee, monograph 2014)

There exists a sequence $t_N \rightarrow 0$, such that

$$\mathbb{E}[\langle R_{0,t_N}^2\rangle_{0,t_N}]=o(1)$$

where $R_{0,t_N}(\sigma^0, \sigma^{t_N}) = \frac{1}{N} \sum_{i=1}^N \sigma_i^0 \sigma_i^{t_N}$, called the overlap between σ^0 and σ^{t_N}

Superconcentration \iff Chaos

Theorem (Chaterjee, monograph 2014) In Gaussian S-K model,

 $\operatorname{Var}[F_g] = o(N)$

if and only if there exist a sequence $t_N \rightarrow 0$ such that

$$\mathbb{E}[\langle R_{0,t_N}^2 \rangle_{0,t_N}] = o(1)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Superconcentration \iff Chaos

Idea of proof: Put $\psi(t) = \mathbb{E}[\langle R_{0,t}^2 \rangle_{0,t}]$

 By dynamical covariance formula, Gaussian integration by parts,

$$a_N = rac{\operatorname{Var}[F_g]}{N} = \int_0^\infty e^{-t} \psi(t) \mathrm{d}t$$

▶ Using spectral arguments, we have $\psi(t) \downarrow$ in t ▶ " ⇐ " ' $\int_0^\infty e^{-t}\psi(t)\mathrm{d}t \leq \int_0^{t_N} e^{-t}\psi(t)\mathrm{d}t + \int_t^\infty e^{-t}\psi(t_N)\mathrm{d}t$ $< (1 - e^{-t_N}) + o(1)$ \blacktriangleright " \Longrightarrow ": $o(1) = a_N = \int_0^\infty e^{-t} \psi(t) \mathrm{d}t \ge \int_0^{t_N} e^{-t} \psi(t) \mathrm{d}t \ge t_N e^{-t_N} \psi(t_N)$

Taking $t_N = \sqrt{a_N}$, then $\psi(t_N) \to 0$.

Superconcentration \iff Chaos

Note: Chaterjee's techniques crucially depend on the Gaussian assumption.

Superconcentration in the general disorders under the four moments condition

Theorem (C., N., V., 2021+)

Suppose that the disorders such that $\mathbb{E}[y^i] = \mathbb{E}[g^i]$ for $1 \le i \le 4$ and $\mathbb{E}[|y|^5] < \infty$. Then there exists a positve constant $C = C(\beta, \mathbb{E}[|y|^5])$, such that

$$|\operatorname{Var}[F_y] - \operatorname{Var}[F_g]| \le CN^{\frac{3}{4}},$$

and as a consequence, $\operatorname{Var}[F_y] \leq \frac{2CN}{\log N}$.

Our idea: using the interpolation technique to get the universality of first and second moments of the free energy.

Interpolation method in S-K model

Aim: Estimate the upper bound of $|\mathbb{E}[f_y] - \mathbb{E}[f_g]|$. Examples: $f = F = \log Z$ or $f = F^2 = (\log Z)^2$

▶ Consider the interpolated Hamiltonian between H_g and H_y

$$H_t(\sigma) = \frac{\beta}{\sqrt{N}} \sum_{1 \le i < j \le E} (\sqrt{t} y_{ij} + \sqrt{1 - t} g_{ij}) \sigma_i \sigma_j, \qquad t \in [0, 1]$$

Define interpolated function,

$$Q(t) = \mathbb{E}[f_t], \qquad Q(0) = \mathbb{E}[f_g], \qquad Q(1) = \mathbb{E}[f_y]$$

▶ Try to bound |Q'(t)| since

$$|\mathbb{E}[f_y] - \mathbb{E}[f_g]| = |Q(1) - Q(0)| \leq \sup_{0 \leq t \leq 1} |Q'(t)|$$

Tool: an approximation via integration by parts.

Superconcentration in Gaussian functional disorders

Theorem (C., N., V., 2021+)

Assume that y = h(g) where $h : \mathbb{R} \to \mathbb{R}$ is a smooth function satisfying

$$h(g) \stackrel{(d)}{=} -h(g), \tag{H1}$$

and

$$|h^{(b)}(x)| \le \exp\left(rac{x^2}{arphi(|x|)}
ight) \qquad orall b \ge 0, \, x \in \mathbb{R}.$$
 (H2)

for an increasing function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$. Then there exists an increasing function $p_{\phi} : \mathbb{N} \to \mathbb{R}$, depends on ϕ , such that

$$\operatorname{Var}[F_{y}] \leq \frac{C(\beta)N}{p_{\phi}^{-1}(N^{\frac{1}{6}})} = o(N),$$

where p_{ϕ}^{-1} is the increasing inverse function of p_{ϕ} .

Corollary

(i) If
$$\varphi_1(x) = cx^{\alpha}$$
 with $c, \alpha > 0$, then we can take
 $p_{\phi_1}(k) = \exp\left(C(\beta)(k\log k + k\frac{2}{\alpha})\right).$

Therefore,

$$\operatorname{Var}[F_{y_1}] \leq C(\beta) N\Big(rac{\log\log N}{\log N} + (\log N)^{rac{-lpha}{2}}\Big),$$

where y_1 random variable satisfying (H2) with function φ_1 . (ii) If $\varphi_2(x) = c \log(x+1)$ with c > 0, then we can take $p_{\phi_2}(k) \le \exp(\exp(C(\beta)k))$.

Therefore,

$$\operatorname{Var}[F_{y_2}] \leq \frac{C(\beta)N\log\log\log N}{\log\log N},$$

where y_2 are random variable satisfying (H2) with function φ_2 .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Idea of the proof: Using an spectral theory for Orbstein-Uhlenbeck semigroup by Chaterjee (2014).

An improved Gaussian Poincaré inequality

Theorem (Chaterjee, monograph 2014)

Let γ^n be the product measure of n i.i.d. $\sim \mathcal{N}(0, 1)$ and let f be a smooth function which is in $L^2(\gamma^n)$. Then for any $m \geq 1$,

$$\mathsf{Var}_{\gamma^n}[f] \le \sum_{k=1}^{m-1} \frac{\theta_k(f)}{k!} + \frac{\mathbb{E}_{\gamma^n}[|\nabla f|^2]}{m},\tag{1}$$

where
$$\theta_k(f) = \sum_{1 \leq i_1, \dots, i_k \leq n} \left(\mathbb{E}_{\gamma^n} \left[\frac{\partial^k f}{\partial x_{i_1} \dots \partial x_{i_k}} \right] \right)^2.$$

Application: Assume that y = h(g) with $h : \mathbb{R} \to \mathbb{R}$ is smooth function then (1) holds with

$$f = F_y = F(h(g)) = F \circ h((g_{ij})_{1 \le i < j \le N}),$$

as a smooth function in $L^2(\gamma^{N(N-1)/2})$ and

$$\theta_k(F_y) = \sum_{1 \le i_1 < j_1, \dots, i_k < j_k \le N} \left(\mathbb{E} \left[\frac{\partial^k F_y}{\partial g_{i_1 j_1} \dots \partial g_{i_k j_k}} \right] \right)^2$$

Some open questions

Improve the moments condition:

If $\mathbb{E}[y] = 0$ and $\mathbb{E}[y^2] < \infty$, then $\operatorname{Var}[F_y] = o(N)$?

▶ Establish the universality for chaotic phenomenon: $\exists t_N \rightarrow 0$ such that

$$\mathbb{E}[\langle R_{0,t_N}^2 \rangle_{0,t_N}] = o(1)$$

in the general disorders, even under some moments requirement?

▶ Improve the bound of variance of free energy: there exists $\varepsilon > 0$ such that,

$$\operatorname{Var}[F_y] \leq C(\beta) N^{1-\varepsilon}$$

in Gaussian disorders?, in non-Gaussian disorders?

References

- A. Auffinger, W. -K. Chen. Universality of chaos and ultrametricity in mixed p-spin models. Commun. Pure. Appl. Math. 69, 2107-2130 (2016).
- S. Chatterjee. *Superconcentration and related topics*. Springer Monographs in Mathematics. Springer, Cham. (2014).
- Y. T. Chen. Universality of Ghirlanda-Guerra identities and spin distributions in mixed p-spin models. Ann. Inst. H. Poincaré Probab. Stat. 55, 528-550 (2019)..
- D. Panchenko. *The Sherrington-Kirkpatrick Model*. Springer-Verlag New York (2013).
- M. Talagrand. *The Parisi formula*. Ann. Math. **163**, 221-263 (2006).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

THANK YOU FOR YOUR ATTENTION

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ