
Motivation Results References

Existence and Uniqueness of Quasi-stationary and
Quasi-ergodic Measures for Absorbing Markov

Processes

Matheus Manzatto de Castro

Supervisors: Dr. Jeroen Lamb and Dr. Martin Rasmussen

Department of Mathematics
Imperial College London

7th September 2021

Matheus Manzatto de Castro Existence and Uniqueness of QSM and QEM for MP 7th September 2021 1 / 17



Motivation Results References

Table of Contents

1 Motivation

2 Results

Matheus Manzatto de Castro Existence and Uniqueness of QSM and QEM for MP 7th September 2021 2 / 17



Motivation Results References

Motivation
Let us consider the elementary discrete-time Markov process

Xn+1 = X 3
n + 6ωn

on R, where {ωi}i∈N0 is a sequence of i.i.d. random variables uni-
formly distributed in [−1,1]. Moreover we denote as P the probability
measure induced by such a sequence of random variables.
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Motivation

It is readily verified that if Xn lies outside the interval M := [−2,2]
then so does Xn+1. In other words, Xn is absorbing in R \M.
For such a process, it is natural to study the behaviour of the process
conditioned on survival in M. It is useful to define the stopping time τ
for Xn as the smallest τ ∈N0 for which Xτ 6∈ M, and the quantity

Pν[Xn ∈ A] := P[Xn ∈ A | X0 ∼ ν]

as the probability that Xn lies in the measurable subset A ⊂ M, given
that X0 is distributed as ν. In particular, in case ν = δx we write Pν =:
Px .
Finally we define the transition functions P for the Markov process Xn
as

Pn(x ,A) = P[Xn ∈ A | X0 = x ],

where n ∈N, A ∈ B(M) and x ∈ M.
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Stating the problem

Problem

Given x ∈ M and A ∈ B(M), is it possible to compute

lim
n→∞

Px [Xn ∈ A | τ > n] = lim
n→∞

Ex [1A ◦ Xn | τ > n]

= lim
n→∞

P[Xn ∈ A | X0 = x ]
P[Xn ∈ M | X0 = x ]

= lim
n→∞

Pn(x ,A)
Pn(x ,M)

?

Does the above limit depends of the starting point x? Is

µ(·) = lim
n→∞

P[Xn ∈ · | X0 = x ]
P[Xn ∈ M | X0 = x ]

= lim
n→∞

Pn(x , ·)
Pn(x ,M)

,

a measure on M?
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Quasi-stationary measure

Definition
Under the previous assumptions on Xn. A probability measure µ on
M is called an quasi-stationary, with survival rate λ > 0, if∫

M
P(x , ·)µ(dx) = λµ(·).

It is easy to prove that µ is a quasi-stationary measure then

Pµ[Xn ∈ · | τ > n] :=

∫
M P

n(x , ·)µ(dx)∫
M Pn(x ,M)µ(dx)

= µ(·), ∀ n ∈N.

It also possible to prove that if µ is QSM with survival rate λ, then∫
M

∫
Ω

τ(ω, x)P(dω)µ(dx) =
1

1− λ
.
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Quasi-ergodic measure
If φ : (M,B(M), ν)→ (M,B(M), ν) is an ergodic dynamical system

∀ f ∈ bB(M)⇒ lim
n→∞

1
n

n−1

∑
i=0

f ◦ φi (x) =
∫

f (x)ν(dx), ν-a.s.

Definition
Under the previous assumptions on Xn. A probability measure η on
M is called an quasi-ergodic measure, if for every bounded
measure function f on M,

lim
n→∞

Ex

[
1
n

n−1

∑
i=0

f ◦ Xi

∣∣∣ τ > n

]
=
∫

M
f (y)η(dy), ∀ x ∈ M.

Problem
Does Xn admits quasi-stationary and quasi-ergodic measures? Is
there a relationship between quasi-stationary and quasi-ergodic
measures?
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Despite Xn being an elementary Markov process, the existence of
a quasi-stationary and quasi-ergodic measures for Xn on M has re-
mained an open problem, which is now settled, and the existence of
these measures are confirmed for a large class of absorbing Markov
process which includes Xn.
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Hypothesis (H)

Let E be a metric space, M ⊂ E be an non-empty compact set and
X : N×Ω → E a discrete-time Markov process absorbing in E \M.
We say that Xn fulfils hypothesis (H), if

(H1) There exists a probability a Borel probability measure ρ on M,
such that for all x ∈ M, P(x ,dy)� ρ(dy), and the
Radon–Nikodym derivative

g(x , y) :=
P(x ,dy)

ρ(dy)
,

lies in L∞(M ×M,B(M ×M), ρ⊗ ρ). Moreover, for every x ∈ M
and ε > 0, there exists δ > 0, such that

‖x − z‖ < δ⇒
∫

M
|g(x , y)− g(z, y)|ρ(dy) < ε.
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Hypothesis (H)

(H2) Writing M = Z tR, were

Z = {x ∈ M;P(x ,M) = 0} and R = {x ∈ M; P(x ,M) > 0},

then given x ∈ R and an open set A ⊂ M, there exists
n = n(x ,A) ∈N, such that

Pn(x ,A) > 0.
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Results I

All the results presented in this seminar were proven in collabora-
tion with Dr. Jeroen Lamb, Dr. Martin Rasmussen and Dr. Guillermo
Olicón Méndez.
Let Xn be a RDS satisfying (H1), (H2), then
(a) If P(x ,M) = 1, ∀ x ∈ M, then X , admits a unique stationary

probability measure µ and supp(µ) = M.
(b) If there exists x ∈ R, such that P(x ,M) < 1, then

lim
n→∞

Pn(y ,M)→ 0, ∀ y ∈ M,

and the Markov Process Xn admits a unique quasi-stationary
measure µ with supp(µ) = M, with survive rate λ.
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Results II
Moreover, in both cases (a) and (b) the Stochastic Koopman oper-
ator

P :
(
C0(M), ‖ · ‖∞

)
→
(
C0(M), ‖ · ‖∞

)
f 7→

(
x 7→

∫
M

f (y)P(x ,dy)
)

is a well defined compact bounded linear operator with r (P) = λ,
there exists 0 < m ∈N, such that{

λe
2πij
m

}m−1

j=0
,

are the unique eigenvalues of absolute values equal to λ of the oper-
ator P , and

dim
(

ker
(
P − λe

2πij
m

))
= 1, ∀ j ∈ {0,1, . . . ,m− 1},

there exists f ∈ C0
+(M), such that P(f ) = λf and

m ≤ #{connected components of M \ Z}.
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Results III
Finally, let f ∈ C0

+(M) a function satisfying P(f ) = λf .
(M1) If m = 1, then Xn admits a quasi ergodic-measure equal to

η(dx) =
f (x)µ(dx)∫
M f (y)µ(dy)

,

in the sense that, given a bounded measurable function g,

lim
n→∞

1
n

n−1

∑
i=0

Ex [g ◦ Xn | τ > n] =
∫

g(y)ν(dy), ∀ x ∈ R.

Moreover, for every ν ∈ M+(M), such that
∫

f dν > 0, there
exist constants C(ν), α > 0, such that

‖Pν [Xn ∈ · | τ > n]− µ‖TV =

∥∥∥∥∥
∫

M P
n(y , ·)ν(dy)∫

M Pn(x ,M)ν(dx)
− µ

∥∥∥∥∥
TV

≤ C(ν)e−αt .
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Results IV
(M2) If m > 1 and ρ(Z ) = 0, admits a quasi ergodic-measure equal to

η(dx) =
f (x)µ(dx)∫
M f (y)µ(dy)

,

and there exists open sets (in the induced topology of M)
C0,C1, . . . ,Cm−1 = C−1, such that

M \ Z = C0 tC1 t . . . tCm−1,

satisfying

supp (P(·,Ci )) = {P(·,Ci ) 6= 0} = Ci−1, ∀ i ∈ {0,1, . . . ,m−1},

and, given ν ∈ M+(M), such that
∫

f dν > 0, then there exist
C(ν) > 0, such that∥∥∥∥∥1

n

n

∑
i=1

Pν [Xi ∈ ·]
Pν [Xi ∈ M ]

− µ

∥∥∥∥∥
TV

<
C(ν)

n
.
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