Existence and Uniqueness of Quasi-stationary and Quasi-ergodic Measures for Absorbing Markov Processes

Matheus Manzatto de Castro

Supervisors: Dr. Jeroen Lamb and Dr. Martin Rasmussen

Department of Mathematics Imperial College London

7th September 2021

Table of Contents

	Motivation		
000000 0	00000	000000	0

Motivation

Let us consider the elementary discrete-time Markov process

$$X_{n+1} = X_n^3 + 6\omega_n$$

on \mathbb{R} , where $\{\omega_i\}_{i\in\mathbb{N}_0}$ is a sequence of i.i.d. random variables uniformly distributed in [-1, 1]. Moreover we denote as \mathbb{P} the probability measure induced by such a sequence of random variables.

Motivation ⊙●○○○○	

Motivation

It is readily verified that if X_n lies outside the interval M := [-2, 2]then so does X_{n+1} . In other words, X_n is absorbing in $\mathbb{R} \setminus M$. For such a process, it is natural to study the behaviour of the process conditioned on survival in M. It is useful to define the stopping time τ for X_n as the smallest $\tau \in \mathbb{N}_0$ for which $X_\tau \notin M$, and the quantity

$$\mathbb{P}_{\nu}[X_n \in A] := \mathbb{P}[X_n \in A \mid X_0 \sim \nu]$$

as the probability that X_n lies in the measurable subset $A \subset M$, given that X_0 is distributed as ν . In particular, in case $\nu = \delta_x$ we write $\mathbb{P}_{\nu} =: \mathbb{P}_x$.

Finally we define the transition functions \mathcal{P} for the Markov process X_n as

$$\mathcal{P}^n(\mathbf{x}, \mathbf{A}) = \mathbb{P}[X_n \in \mathbf{A} \mid X_0 = \mathbf{x}],$$

where $n \in \mathbb{N}$, $A \in \mathscr{B}(M)$ and $x \in M$.

Stating the problem

Problem

Given $x \in M$ and $A \in \mathcal{B}(M)$, is it possible to compute

$$\lim_{n \to \infty} \mathbb{P}_X \left[X_n \in A \mid \tau > n \right] = \lim_{n \to \infty} \mathbb{E}_X \left[\mathbb{1}_A \circ X_n \mid \tau > n \right]$$
$$= \lim_{n \to \infty} \frac{\mathbb{P}[X_n \in A \mid X_0 = x]}{\mathbb{P}[X_n \in M \mid X_0 = x]}$$
$$= \lim_{n \to \infty} \frac{\mathcal{P}^n(x, A)}{\mathcal{P}^n(x, M)} ?$$

Does the above limit depends of the starting point x? Is

$$\mu(\cdot) = \lim_{n \to \infty} \frac{\mathbb{P}[X_n \in \cdot \mid X_0 = x]}{\mathbb{P}[X_n \in M \mid X_0 = x]} = \lim_{n \to \infty} \frac{\mathcal{P}^n(x, \cdot)}{\mathcal{P}^n(x, M)},$$

a measure on M?

Matheus Manzatto de Castro

7th September 2021 5 / 17

Impenal College

London

Quasi-stationary measure

Definition

Under the previous assumptions on X_n . A probability measure μ on M is called an **quasi-stationary**, with survival rate $\lambda > 0$, if

$$\int_{M} \mathcal{P}(\mathbf{x}, \cdot) \mu(\mathrm{d}\mathbf{x}) = \lambda \mu(\cdot).$$

It is easy to prove that $\boldsymbol{\mu}$ is a quasi-stationary measure then

$$\mathbb{P}_{\mu}[X_{n} \in \cdot \mid \tau > n] := \frac{\int_{M} \mathcal{P}^{n}(x, \cdot) \mu(\mathrm{d}x)}{\int_{M} \mathcal{P}^{n}(x, M) \mu(\mathrm{d}x)} = \mu(\cdot), \ \forall \ n \in \mathbb{N}.$$

It also possible to prove that if μ is QSM with survival rate λ , then

$$\int_{M} \int_{\Omega} \tau(\omega, x) \mathbb{P}(\mathrm{d}\omega) \mu(\mathrm{d}x) = \frac{1}{1-\lambda}$$

Motivation		
000000	000000	0

Quasi-ergodic measure

If $\phi : (M, \mathcal{B}(M), \nu) \to (M, \mathcal{B}(M), \nu)$ is an ergodic dynamical system

$$\forall f \in \mathbf{b}\mathcal{B}(\mathbf{M}) \Rightarrow \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} f \circ \phi^i(x) = \int f(x) \nu(\mathrm{d}x), \ \nu\text{-a.s.}$$

Definition

Under the previous assumptions on X_n . A probability measure η on M is called an **quasi-ergodic measure**, if for every bounded measure function f on M,

$$\lim_{n\to\infty} \mathbb{E}_{x}\left[\frac{1}{n}\sum_{i=0}^{n-1}f\circ X_{i} \mid \tau > n\right] = \int_{M}f(y)\eta(\mathrm{d} y), \ \forall \ x \in M.$$

Problem

Does X_n admits quasi-stationary and quasi-ergodic measures? Is there a relationship between quasi-stationary and quasi-ergodic measures?

Matheus Manzatto de Castro

ege

Motivation Results	References
000000 000000	0

Despite X_n being an elementary Markov process, the existence of a quasi-stationary and quasi-ergodic measures for X_n on M has remained an open problem, which is now settled, and the existence of these measures are confirmed for a large class of absorbing Markov process which includes X_n .

Hypothesis (H)

Let *E* be a metric space, $M \subset E$ be an non-empty compact set and $X : \mathbb{N} \times \Omega \to E$ a discrete-time Markov process absorbing in $E \setminus M$. We say that X_n fulfils hypothesis (**H**), if

(H1) There exists a probability a Borel probability measure ρ on M, such that for all $x \in M$, $\mathcal{P}(x, dy) \ll \rho(dy)$, and the Radon–Nikodym derivative

$$g(x,y):=\frac{\mathcal{P}(x,\mathrm{d}y)}{\rho(\mathrm{d}y)},$$

lies in $L^{\infty}(M \times M, \mathscr{B}(M \times M), \rho \otimes \rho)$. Moreover, for every $x \in M$ and $\varepsilon > 0$, there exists $\delta > 0$, such that

$$\|x-z\| < \delta \Rightarrow \int_{M} |g(x,y)-g(z,y)|\rho(\mathrm{d} y) < \varepsilon.$$

000000 0 00000 0	

Hypothesis (H)

(H2) Writing $M = Z \sqcup R$, were

$$Z = \{x \in M; \mathcal{P}(x, M) = 0\}$$
 and $R = \{x \in M; \mathcal{P}(x, M) > 0\}$,

then given $x \in R$ and an open set $A \subset M$, there exists $n = n(x, A) \in \mathbb{N}$, such that

 $\mathcal{P}^n(\boldsymbol{x},\boldsymbol{A})>0.$

Imperial College London

10/17

7th September 2021

Results	
00000	

Results I

All the results presented in this seminar were proven in collaboration with Dr. Jeroen Lamb, Dr. Martin Rasmussen and Dr. Guillermo Olicón Méndez.

Let X_n be a RDS satisfying (H1), (H2), then

- (a) If $\mathcal{P}(x, M) = 1$, $\forall x \in M$, then *X*, admits a unique stationary probability measure μ and $\operatorname{supp}(\mu) = M$.
- (b) If there exists $x \in R$, such that $\mathcal{P}(x, M) < 1$, then

$$\lim_{n\to\infty}\mathcal{P}^n(y,M)\to 0, \ \forall \ y\in M,$$

and the Markov Process X_n admits a unique quasi-stationary measure μ with supp $(\mu) = M$, with survive rate λ .

Results	
000000	

Results II

Moreover, in both cases (a) and (b) the Stochastic Koopman operator

$$\mathcal{P}: \left(\mathcal{C}^{0}(M), \|\cdot\|_{\infty}\right) \to \left(\mathcal{C}^{0}(M), \|\cdot\|_{\infty}\right)$$
$$f \mapsto \left(x \mapsto \int_{M} f(y)\mathcal{P}(x, \mathrm{d}y)\right)$$

is a well defined compact bounded linear operator with $r(\mathcal{P}) = \lambda$, there exists $0 < m \in \mathbb{N}$, such that

$$\left\{\lambda oldsymbol{e}^{rac{2\pi i j}{m}}
ight\}_{j=0}^{m-1}$$
 ,

are the unique eigenvalues of absolute values equal to λ of the operator $\mathcal P,$ and

dim
$$\left(\operatorname{ker}\left(\mathcal{P}-\lambda e^{\frac{2\pi i j}{m}}\right)\right)=1, \forall j \in \{0, 1, \dots, m-1\},$$

there exists $f \in \mathcal{C}^0_+(M)$, such that $\mathcal{P}(f) = \lambda f$ and

 $m \le \#\{$ connected components of $M \setminus Z \}$. Imperial College London

	Results 0000●0	
Besults III		
Finally, let $f \in C^0_+(M)$ a function	n satisfying $\mathcal{P}(f) = \lambda f$.	
(M1) If $m = 1$, then X_n admits a	quasi ergodic-measure equal to	

$$\eta(\mathrm{d} x) = \frac{f(x)\mu(\mathrm{d} x)}{\int_M f(y)\mu(\mathrm{d} y)},$$

in the sense that, given a bounded measurable function g,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\mathbb{E}_{x}\left[g\circ X_{n}\mid \tau>n\right]=\int g(y)\nu(\mathrm{d} y),\;\forall\;x\in R.$$

Moreover, for every $\nu \in \mathcal{M}_+(M)$, such that $\int f d\nu > 0$, there exist constants $C(\nu)$, $\alpha > 0$, such that

$$\|\mathbb{P}_{\nu} [X_{n} \in \cdot | \tau > n] - \mu\|_{TV} = \left\| \frac{\int_{M} \mathcal{P}^{n}(y, \cdot)\nu(\mathrm{d}y)}{\int_{M} \mathcal{P}^{n}(x, M)\nu(\mathrm{d}x)} - \mu \right\|_{TV}$$

$$\leq C(\nu)e^{-\alpha t}.$$
 Imperial College

Results	
000000	

Results IV

(M2) If m > 1 and $\rho(Z) = 0$, admits a quasi ergodic-measure equal to

$$\eta(\mathrm{d} x) = \frac{f(x)\mu(\mathrm{d} x)}{\int_M f(y)\mu(\mathrm{d} y)},$$

and there exists open sets (in the induced topology of M) $C_0, C_1, \ldots, C_{m-1} = C_{-1}$, such that

$$M \setminus Z = C_0 \sqcup C_1 \sqcup \ldots \sqcup C_{m-1},$$

satisfying

$$\operatorname{supp}\left(\mathcal{P}(\cdot, \mathbf{C}_{i})\right) = \{\mathcal{P}(\cdot, \mathbf{C}_{i}) \neq \mathbf{0}\} = \mathbf{C}_{i-1}, \forall i \in \{\mathbf{0}, \mathbf{1}, \dots, m-1\},\$$

and, given $\nu \in \mathcal{M}_+(M)$, such that $\int f d\nu > 0$, then there exist $\mathcal{C}(\nu) > 0$, such that

$$\left\|\frac{1}{n}\sum_{i=1}^{n}\frac{\mathbb{P}_{\nu}\left[X_{i}\in\cdot\right]}{\mathbb{P}_{\nu}\left[X_{i}\in M\right]}-\mu\right\|_{TV}<\frac{C(\nu)}{n}.$$
 Imperial College London

		References
000000	000000	0

References I

- Hicham Zmarrou and Ale Jan Homburg. 'Bifurcations of stationary measures of random diffeomorphisms'. In: **Ergodic theory and dynamical systems** 27.5 (2007), pp. 1651–1692.
- Nicolas Champagnat and Denis Villemonais. 'Exponential convergence to quasi-stationary distribution and Q-process'. In: Probability Theory and Related Fields 164.1-2 (2016), pp. 243–283.
- Pierre Collet, Servet Martinez and Jaime San Martin. Quasistationary distributions: Markov chains, diffusions and dynamical systems. Springer Science & Business Media, 2012.
- Michel Benaim, Bertrand Cloez and Fabien Panloup. 'Stochastic approximation of quasi-stationary distributions on compact spaces and applications'. In: **Ann. Appl. Probab.** 28.4 (2018), pp. 2370–2416. ISSN: 1050-5164. DOI: 10.1214/17-AAP1360.

References II

- Amaury Lambert et al. 'Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct'. In: Electronic Journal of Probability 12 (2007), pp. 420–446.
- Nicolas Champagnat and Denis Villemonais. 'General criteria for the study of quasi-stationarity'. In: **arXiv preprint arXiv:1712.08092** (2017).
- William Oçafrain. 'Quasi-stationarity and quasi-ergodicity for discrete-time Markov chains with absorbing boundaries moving periodically'. In: arXiv preprint arXiv:1707.08419 (2017).
- Erik A. van Doorn and P.K. Pollett. 'Quasi-stationary distributions for reducible absorbing Markov chains in discrete time'. Undefined. In: Markov processes and related fields 15.2 (2009), pp. 191–204. ISSN: 1024-2953.

	References
	•

