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Stochastic stability: moment approach

Asymptotic stability for deterministic systems: Lyapunov (1892) ε− δ language.
Stochastic stability for Markov systems: Khasminskii (1979), Skorohod (1987), ...
Exponential stability: Molchanov, Arnold, Pardoux, Baxendale, Mao... and many others in
control theory.

dyt = [Ayt + f (yt )]dt + g(yt )dBt , x(0) = x0 ∈ Rd , (1.1)

A ∈ Rd×d neg. def. λA, f : Rd → Rd , g : Rd → Rd×m glob. Lischitz continuous w.r.t. Cf ,Cg .
Applying Itô’s formula

d‖yt‖2 =
(

2〈yt ,Ayt 〉+ 2〈yt , f (yt )〉+ ‖g(yt )‖2
)

dt + 2〈yt , g(yt )dBt 〉 (1.2)

≤ (−2λA + 2Cf + C2
g )‖yt‖2 + ‖g(yt )‖2

)
dt + 2〈yt , g(yt )dBt 〉. (1.3)

Applying the expectation, E〈yt , g(yt )dBt 〉 = 0, thus

dE‖yt‖2 ≤ (−2λA + 2Cf + C2
g )E‖yt‖2dt .

Applying continuous Gronwall lemma

E‖yt‖2 ≤ E‖y0‖2e−2(λA−Cf− 1
2 C2

g )t .

⇒ E‖yt‖ is exponentially decaying to zero given λA − Cf >
1
2 C2

g , which follows that ‖yt‖
converges exponentially and almost surely to zero due to Borel-Catelli lemma.
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Stochastic stability: pathwise approach

Pathwise approach

yt = Φ(t)y0 +

∫ t

0
Φ(t − s)f (ys)ds +

∫ t

0
Φ(t − s)g(ys)dBs

where Φ(t) = eAt is the semigroup generated by A. In addition, ‖Φ(t)‖ ≤ CAe−λAt , ∀t ≥ 0.
First, for any t ∈ [n, n + 1), it follows from (1.1) and the global Lipschitz continuity of f that

‖yt‖ ≤ ‖Φ(t)y0‖+

∫ t

0
‖Φ(t − s)f (ys)‖ds +

∥∥∥∫ t

0
Φ(t − s)g(ys)dBs

∥∥∥
≤ CAe−λAt‖y0‖+

∫ t

0
CAe−λA(t−s)

(
Cf ‖ys‖+ ‖f (0)‖

)
ds +

∥∥∥∫ t

0
Φ(t − s)g(ys)dBs

∥∥∥
≤ CAe−λAt‖y0‖+

CA

λA
‖f (0)‖(1− e−λAt ) + CACf

∫ t

0
e−λA(t−s)‖ys‖ds + βt ,

where βt :=
∥∥∥ ∫ t

0 Φ(t − s)g(ys)dBs

∥∥∥. Multiplying both sides of the above inequality with eλAt yields

‖yt‖eλAt ≤ CA‖y0‖+
CA

λA
‖f (0)‖(eλAt − 1) + βt eλAt + CACf

∫ t

0
eλAs‖ys‖ds.
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Stochastic stability: pathwise approach

By applying the continuous Gronwall Lemma, we obtain

‖yt‖eλAt ≤ CA‖y0‖+
CA

λA
‖f (0)‖(eλAt − 1) + βt eλAt

+

∫ t

0
CACf e

CACf (t−s)
[
CA‖y0‖+

CA

λA
‖f (0)‖(eλAs − 1) + βseλAs

]
ds.

Once again, multiplying both sides of the above inequality with e−CACf t and assigning
λ := λA − CACf yields

‖yt‖eλt ≤ CA‖y0‖e−CACf t +
CA

λA
‖f (0)‖

(
eλt − e−CACf t

)
+ βt eλt

+

∫ t

0
CACf e

−CACf s
[
CA‖y0‖+

CA

λA
‖f (0)‖(eλAs − 1) + βseλAs

]
ds

≤ CA‖y0‖+
CA

λ
‖f (0)‖

(
eλt − 1

)
+ βt eλt +

∫ t

0
CACfβseλsds. (1.4)

Next, due to isometry of Itô integral

Eβ2
t = E

∥∥∥∫ t

0
Φ(t − s)g(ys)dBs

∥∥∥2
= (C)

∫ t

0
E‖Φ(t − s)g(ys)‖2ds ≤ C2

AC2
g

∫ t

0
e−2λA(t−s)E‖ys‖2ds.

⇒ isometry assumption can be relaxed upto a constant C!
L.H.Duc (VAST MIS) rough systems
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Stochastic stability: pathwise approach

Then by applying the inequality

(a + b + c)2 ≤ (1 + ε)a2 + (1 +
1
ε

)(1 + ε̄)b2 + (1 +
1
ε

)(1 +
1
ε̄

)c2, ∀a, b, c, ε, ε̄ > 0

and (∫ t

0
‖βs‖e−λ(t−s)ds

)2
≤
(∫ t

0
e−2%(t−s)ds

)(∫ t

0
‖βs‖2e−2(λ−%)(t−s)ds

)
to (1.4), we obtain for any 0 < % < λ and any ε, ε̄ > 0 the estimate

E‖yt‖2 ≤ (1 +
1
ε

)(1 +
1
ε̄

)C2
Ae−2(λ−%)tE‖y0‖2 + (1 + ε)C2

AC2
g

∫ t

0
e−2(λ−%)(t−s)E‖ys‖2ds

+(1 +
1
ε

)(1 + ε̄)C2
AC2

g
L2

f
2%

∫ t

0

∫ s

0
e−2(λ−%)(t−u)E‖yu‖2du ds. (1.5)

Multiplying both sides of (1.5) by e2(λ−%)t and assigning γt := e2(λ−%)tE‖yt‖2, we derive an
inequality

γt ≤ (1 +
1
ε

)(1 +
1
ε̄

)C2
Aγ0 + (1 + ε)C2

AC2
g

∫ t

0
γsds + (1 +

1
ε

)(1 + ε̄)C2
AC2

g
L2

f
2%

∫ t

0

∫ s

0
γudu ds.
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Stochastic stability: pathwise approach

Lemma (Gronwall lemma for iterated integrals)

Assume that T , a, b, c > 0 and γt > 0 satisfies

γt ≤ aγ0 + b
∫ t

0
γsds + c

∫ t

0

∫ s

0
γudu ds, ∀t ∈ [0,T ]. (1.6)

Then γt ≤ aγ0eν2t for all t ∈ [0,T ], where ν2 > 0 > ν1 are two roots of the quadratic
ν2 − bν − c = 0.

It then follows from the iterated Gronwall lemma that γt < (1 + 1
ε

)(1 + 1
ε̄

)C2
Aγ0eν2t , where

ν2 = ν2(%, ε, ε̄) is the positive root of the quadratic equation

ν2 − (1 + ε)C2
AC2

gν − (1 +
1
ε

)(1 + ε̄)C2
AC2

g
L2

f
2%

= 0. (1.7)

Hence E‖yt‖2 ≤ (1 + 1
ε

)(1 + 1
ε̄

)C2
AE‖y0‖2e−2(λ−%− ν2

2 )t , which derives the sufficient condition for
the exponential stability as follows

λ = λA − CACf > inf
0<%<λ,
ε>0

{
%+

1
4

(1 + ε)C2
AC2

g +
1
4

C2
ACg

[
(1 + ε)2C2

g +
2C2

f
%

(1 +
1
ε

)
] 1

2
}
. (1.8)

⇒ compare with λ = λA − CACf >
1
2 C2

g : still good enough with relaxed Itô isometry!
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Stochastic stability: pathwise approach

Question: How to estimate
∥∥∥ ∫ t

0 Φ(t − s)g(ys)dBs

∥∥∥ in general? Answer: rough path theory!

(i) The following estimate holds: for any 0 ≤ a < b ≤ c∥∥∥∫ b

a
Φ(c − s)g(ys)dxs

∥∥∥ ≤ e−λA(c−b)κ(x, [a, b])
(‖g(0)‖

Cg
+ ‖ya‖+

∣∣∣∣∣∣y ,Ry ∣∣∣∣∣∣
p−var,[a,b]

)
, (1.9)

where

κ(x, [a, b]) := 2CpCA[1 + ‖A‖(b − a)]
{

C2
g |||x|||

2
p−var,[a,b] ∨ Cg |||x|||p−var,[a,b]

}
. (1.10)

(ii) zt = ȳt − yt . Then for any 0 ≤ a < b ≤ c∥∥∥ ∫ b

a
Φ(c − s)[g(ȳs)− g(ys)]dxs

∥∥∥ ≤ e−λA(c−b)κ(x, [a, b])Λ(x, [a, b])
(
‖za‖+

∣∣∣∣∣∣z,Rz ∣∣∣∣∣∣
p−var,[a,b]

)
,

(1.11)
for some function Λ. |||z,Rz |||p−var,[a,b] can be estimated by za.

(iii) ‖yt‖eλt ≤ CA‖y0‖+
CA

λA − CACf
‖f (0)‖

(
eλt − 1

)
(1.12)

+eλA

n∑
k=0

eλkκ(x,∆k )
[‖g(0)‖

Cg
+ ‖yk‖+

∣∣∣∣∣∣y ,Ry ∣∣∣∣∣∣
p−var,∆k

]
, ∀t ∈ ∆n

where ∆k := [k , k + 1], λ := λA − CACf , and |||y ,Ry |||p−var,∆k
depends linearly on yk ⇒ discrete

Gronwall lemma to obtain the absorbing set. (details in next slide)
L.H.Duc (VAST MIS) rough systems
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Stochastic stability: pathwise approach

Assign a := CA‖y0‖, uk := ‖yk‖eλk , k ≥ 0, one obtains

un ≤ a +

n−1∑
k=0

G(x,∆k )uk +

n−1∑
k=0

eλk H(x,∆k ). (1.13)

Discrete Gronwall Lemma: Let a be a non-negative constant and un, αn, βn be non-negative
sequences satisfying

un ≤ a +

n−1∑
k=0

αk uk +

n−1∑
k=0

βk , ∀n ≥ 1

then

un ≤ max{a, u0}
n−1∏
k=0

(1 + αk ) +

n−1∑
k=0

βk

n−1∏
j=k+1

(1 + αj ), ∀n ≥ 1. (1.14)

By assigning ω with θ−nω and using the shift property

‖yn(x(θ−nω), y0(θ−nω))‖ ≤ CA‖y0(θ−nω)‖e−λn
n−1∏
k=0

[
1 + G

(
x(θ−kω), [−1, 0]

)]
+ b(ω), (1.15)

where

b(ω) :=
∞∑

k=1

e−λk H
(
x(θ−kω), [−1, 0]

) k−1∏
j=0

[
1 + G

(
x(θ−jω), [−1, 0]

)]
. (1.16)
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Rough integrals

Norms and spaces

For p ≥ 1, Cp−var([a, b],H): the Banach space with finite norm

‖u‖p,[a,b] = ‖ua‖+ |||u|||p,[a,b] = ‖ua‖+ |||u|||p,[a,b] =

 sup
Π(a,b)

∑
[s,t]∈Π

|us,t |p
1/p

<∞.

For β ∈ (0, 1), Cβ−Hol([a, b],H) the Banach space equipped with norm

‖u‖∞,β,[a,b] := ‖u‖∞,[a,b] + |||u|||β,[a,b] = ‖u‖∞,[a,b] + sup
a≤s<t≤b

‖u(t)− u(s)‖
(t − s)β

.

For α, β ∈ (0, 1), Cα,β([a+, b],H),Cα,β([a, b−],H) the Banach spaces equipped with norms

‖u‖∞,α,β,[a+,b] := ‖u‖∞,[a,b] + sup
a<s<t≤b

|s − a|α
‖u(t)− u(s)‖

(t − s)β

‖u‖∞,α,β,[a,b−] := ‖u‖∞,[a,b] + sup
a≤s<t<b

|b − t |α
‖u(t)− u(s)‖

(t − s)β
.

One can prove that |||y |||α,β,[a+,b] = supa<s<b(s − a)α |||y |||β,[s,b], thus
Cβ([a, b]) ⊂ Cβ,β([a+, b]) ∩ Cβ,β([a, b−]) with |||u|||β,β,[a+,b] ≤ |b − a|β |||u|||β,[a,b].

L.H.Duc (VAST MIS) rough systems
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Rough integrals

Rough paths

In the simplest form for β ∈ ( 1
3 ,

1
2 ), a couple x = (x ,X), with x ∈ Cβ([a, b],H) and

X ∈ C2β
2 ([a, b]2,H ⊗ H) is called a rough path if they satisfy Chen’s relation

Xs,t − Xs,u − Xu,t = xs,u ⊗ xu,t , ∀a ≤ s ≤ u ≤ t ≤ b. (2.1)

We write Xs,t = (x ⊗ x)s,t =:
∫ t

s xs,u ⊗ dxu . In a general form, (y ⊗ x)s,t =:
∫ t

s ys,u ⊗ dxu satisfies
Chen’s relation

(y ⊗ x)s,t − (y ⊗ x)s,u − (y ⊗ x)u,t = ys,u ⊗ xu,t .

Denote by Cβ([a, b]) ⊂ Cβ ⊕ C2β the set of all rough paths in [a, b], then Cβ is a closed set but
not a linear space, equipped with the rough path semi-norm

|||x|||β,[a,b] := |||x |||β,[a,b] + |||X|||
1
2
2β,[a,b]2

<∞. (2.2)

Examples in 1D

Xt =
∫ t

0 asdBs ⇒ Xs,t :=
∫ t

s Xs,udXu = 1
2 X 2

s,t −
1
2

∫ t
s a2

udu. Integral in the Itô sense.

Xt = BH ⇒ Xs,t :=
∫ t

s BH
s,uδBH

u = 1
2 (BH

s,t )
2 − 1

2

(
t2H − s2H

)
. Integral in the

Skorohod-Wick-Itô sense.
[x , 2]s,t := x2

s,t − 2Xs,t ⇒ [x , 2]s,t = [x , 2]s,u + [x , 2]u,t ⇒ [x , 2]0,· ∈ C2ν is a Hölder
continuous path.

L.H.Duc (VAST MIS) rough systems
Mathematics of random systems: Analysis, modelling and algorithms 12

/ 29



Motivation example Rough differential/evolution equations Random dynamical systems from RDEs Random attractors for dissipative systems Acknowledgement

Rough integrals

β > 1
2 : Young integrals

Consider y ∈ Cβ([a, b],V ⊗ H) and x ∈ Cβ([a, b],H), there exists a Young integral
∫ b

a ydx
defined by ∫ b

a
ydx = lim

|Π|→0

∑
[s,t]∈Π

ysxs,t ,

Young-Loeve (Y-L) estimate∥∥∥∫ t

s
yudxu − ysxs,t

∥∥∥ ≤ Kβ |t − s|2β |||y |||β,[a,b] |||x |||β,[a,b] .

In fact, we can prove using fractional calculus that∥∥∥∫ t

s
yudxu − ysxs,t

∥∥∥ ≤ Kβ
(
‖ys,·‖∞,[s,t] + |||y |||β,β,[s+,t]

)(
‖x·,t‖∞,[s,t] + |||x |||β,β,[s,t−]

)
.
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Rough integrals

β ∈ ( 1
3 ,

1
2 ): Rough integrals

A path y ∈ Cβ([a, b],V ⊗H) is then called to be controlled by x ∈ Cβ([a, b],H) if there exists
a tube (y ′,Ry ) with y ′ ∈ Cβ([a, b],V ⊗ H ⊗ H),Ry ∈ C2β(∆2([a, b]),V ⊗ H) such that

ys,t = y ′sxs,t + Ry
s,t , ∀min I ≤ s ≤ t ≤ max I.

y ′ is called Gubinelli derivative of y , which is uniquely defined as long as x ∈ Cβ \ C2β is
truly rough (works for fBm BH ,H ∈ ( 1

3 ,
1
2 ] FH[Chapter 6]).

Denote Fs,t := ysxs,t + y ′sXs,t . Then

δFs,u,t := Fs,t − Fs,u − Fu,t = −y ′s,uXu,t − Ry
s,uxu,t

⇒ ‖δFs,u,t‖ ≤ |t − s|3β
(
|||x |||β,[s,t]

∣∣∣∣∣∣Ry ∣∣∣∣∣∣
2β,∆2[s,t] +

∣∣∣∣∣∣y ′∣∣∣∣∣∣
β,[s,t] |||X|||2β,∆2[s,t]

)
Thanks to the sewing lemma, the rough integral

∫ t
s yudxu can be defined as∫ t

s
yudxu := lim

|Π|→0

∑
[u,v ]∈Π

[yuxu,v + y ′uXu,v ]

Moreover, one gets Y-L typed estimate:∥∥∥∫ t

s
yudxu−ysxs,t−y ′sXs,t

∥∥∥ ≤ Cβ |t−s|3β
(
|||x |||β,[s,t]

∣∣∣∣∣∣Ry ∣∣∣∣∣∣
2β,∆2[s,t]+

∣∣∣∣∣∣y ′∣∣∣∣∣∣
β,[s,t] |||X|||2β,∆2[s,t]

)
.
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Rough differential equations (RDEs)

Existence and uniqueness theorem: RDEs

Finite dimension: RDE dyt = f (yt )dt + g(yt )dxt is understood in the integral form

yt = y0 +

∫ t

0
f (ys)ds +

∫ t

0
g(ys)dxs. (2.3)

Riedel and Scheutzow (2017): f is one sided Lipschitz and linear growth in perpendicular
direction. g ∈ C3

b as usual. Solution of the form (y , y ′) with y , y ′ ∈ Cβ , y ′ = g(y), which is
solved by Doss-Sussmann technique.
Infinite dimension: consider rough evolution equation

dyt = [Ayt + f (yt )]dt + g(yt )dxt , (2.4)

with the solution understood in the mild form

yt = S(t)y0 +

∫ t

0
S(t − s)f (ys)ds +

∫ t

0
S(t − s)g(ys)dxs. (2.5)

Key task: define
∫ t

0 S(t − s)g(ys)dxs for S(·) ∈ Cβ,β .
Garrido-Atienza & Lu & Schmalfuss (2015): define rough integral using fractional calculus
and solution definition by Hu & Nualart (2009).
Hesse & Neamtu (2019): define rough integrals for controlled rough path y ∈ Cβ,β and
x ∈ Cβ using a modified sewing lemma.
Our idea: A hybrid form, i.e. define rough integral for controlled rough path using fractional
calculus. Advantage: simpler scheme with explicit Y-L typed estimate, and solution (y , y ′).

L.H.Duc (VAST MIS) rough systems
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Rough differential equations (RDEs)

Fixed point argument

Back to Gubinelli: solve the equation on some small time interval [0, τ ] for
(y , y ′) ∈Mβ,β

x (y0, g(y0)) such that |||(y , y ′)|||β,β,[0+,τ ] ≤ 1 and

yt = S(t)y0 +

∫ t

0
S(t − s)f (ys)ds +

∫ t

0
S(t − s)g(ys)dxs,

y ′t = g(yt ).

Many ways to choose seminorm, but the simplest one (works well for Cg < 1) is∣∣∣∣∣∣(y , y ′)
∣∣∣∣∣∣
β,β,[0+,τ ]

:=
∣∣∣∣∣∣y ′∣∣∣∣∣∣

β,β,[0+,τ ]
+‖y ′0,·‖∞,[0+,τ ]+

∣∣∣∣∣∣Ry ∣∣∣∣∣∣
β,2β,[0+,τ ]

+‖Ry
0,·
′‖∞,[0+,τ ] ≤ 1.

For general Cg , better use the exponential weighted seminorm |||(y , y ′)|||β,β,ρ,[0+,τ ].

Examples in 1D: dy = µydt + σydxt ⇒ yt = ys exp{µ(t − s)− σ2

2 [x , 2]s,t + σxs,t} where
[x , 2]s,t := x2

s,t − 2Xs,t .

L.H.Duc (VAST MIS) rough systems
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Random dynamical systems

Definition

A (continuous) random dynamical system is an NDS (θ, ϕ) which in addition has the following
properties:
(i), The driving system θ is an ergodic dynamical system (Ω,F ,P, (θt )t∈T ), i.e., the base
(Ω,F ,P) is a probability space and (t , ω) 7→ θtω is a measurable flow which is ergodic under P.
ii, The cocycle (t , ω, x) 7→ ϕ(t , ω)x is measurable w.r.t B ⊗ F ⊗ B(X) and B(X), respectively,
where B(X) is the Borel σ−algebra of X , such that the family ϕ(t , ω, ·) = ϕ(t , ω) : X → X of
self-mappings of X satisfies the cocycle property

ϕ(0, ω) = idX , ϕ(t + s, ω) = ϕ(t , θsω) ◦ ϕ(s, ω), ∀t , s ∈ T , ∀ω ∈ Ω. (3.1)
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Generation of RDS from RDE

Finite dimension - Bailleul & Riedel & Scheutzow (2018)
Infinite dimensional case: Garrido-Atienza & Lu & Schmalfuss (2010,2016), Hesse & Neamtu
(2020)...

T 2
1 (Rm) = 1⊕ Rm ⊕ (Rm ⊗ Rm), is the set with the tensor product

(1, g1, g2)⊗(1, h1, h2) = (1, g1+h1, g1⊗h1+g2+h2), ∀ g = (1, g1, g2),h = (1, h1, h2) ∈ T 2
1 (Rm).

Then it can be shown that (T 2
1 (Rm),⊗) is a topological group with unit element 1 = (1, 0, 0).

For β ∈ ( 1
p , ν), denote by C0,p−var([a, b],T 2

1 (Rm)) the closure of C∞([a, b],T 2
1 (Rm)) in

Cp−var([a, b],T 2
1 (Rm)), and by C0,p−var

0 (R,T 2
1 (Rm)) the space of all x : R→ Rm such that

x |I ∈ C0,p−var(I,T 2
1 (Rm)) for each compact interval I ⊂ R containing 0. Then C0,p−var

0 (R,T 2
1 (Rm))

is equipped with the compact open topology given by the p−variation norm, i.e the topology
generated by the metric:

dp(x1, x2) :=
∑
k≥1

1
2k

(‖x1 − x2‖p−var,[−k,k ] ∧ 1).

As a result, it is separable and thus a Polish space.
Let us consider a stochastic process X̄ defined on a probability space (Ω̄, F̄ , P̄) with realizations in
(C0,p−var

0 (R,T 2
1 (Rm)),F). Assume further that X̄ has stationary increments.
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Generation of RDS: rough equations

Assign
Ω := C0,p−var

0 (R,T 2
1 (Rm))

and equip with the Borel σ− algebra F and let P be the law of X̄. Denote by θ the Wiener-type shift

(θtω)· = ω−1
t ⊗ ωt+·, ∀t ∈ R, ω ∈ C0,p−var

0 (R,T 2
1 (Rm)), (3.2)

and define the so-called diagonal process X : R× Ω→ T 2
1 (Rm),Xt (ω) = ωt for all t ∈ R, ω ∈ Ω.

Due to the stationarity of X̄, it can be proved that θ is invariant under P, then forming a continuous
(and thus measurable) dynamical system on (Ω,F ,P) [BRSch17 -Theorem 5]. Moreover, X forms
a p− rough path cocycle, namely, X·(ω) ∈ C0,p−var

0 (R,T 2
1 (Rm)) for every ω ∈ Ω, which satisfies

the cocyle relation:
Xt+s(ω) = Xs(ω)⊗ Xt (θsω),∀ω ∈ Ω, t , s ∈ R,

in the sense that Xs,s+t = Xt (θsω) with the increment notation Xs,s+t := X−1
s ⊗ Xs+t . It is

important to note that the two-parameter flow property

Xs,u ⊗ Xu,t = Xs,t , ∀s, t ∈ R

is equivalent to the fact that Xt (ω) = (1, xt (ω),X0,t (ω)), where x·(ω) : R→ Rm and
X·,·(ω) : I × I → Rm ⊗ Rm are random funtions satisfying Chen’s relation relation (2.1).
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Generation of RDS: rough equations

In particular, due to the fact that |||X·(θhω)|||p−var,[s,t] = |||X·(ω)|||p−var,[s+h,t+h], it follows from
Birkhorff ergodic theorem that

Γ(x, p) := lim sup
n→∞

(1
n

n∑
k=1

|||θ−k x|||pp−var,[−1,1]

) 1
p

=
(

E |||X·(·)|||pp−var,[−1,1]

) 1
p

= Γ(p) (3.3)

for almost all realizations xt of the form Xt (ω). We assume additionally that (Ω,F ,P, θ) is ergodic.

Theorem

Let (Ω,F ,P, θ) be a measurable metric dynamical system and let X : R× Ω→ T 2
1 (Rm) be a p-

rough cocycle for some 2 ≤ p < 3. Then there exists a unique continuous random dynamical
system ϕ over (Ω,F ,P, θ) which solves the rough differential equation

dyt = f (yt )dt + g(yt )dXt (ω), t ≥ 0. (3.4)
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Random attractors: classical theory

Random attractors

Universe: D a family of random sets M̂ = {M(ω)}ω∈Ω which is closed w.r.t. inclusions (i.e. if
D̂1 ∈ D and D̂2 ⊂ D̂1 then D̂2 ∈ D).

Definition (Crauel & Flandoli-1994)

An invariant random compact set Â ∈ D is called
(i), a pullback random attractor in D, if Â attracts any closed random set D̂ ∈ D in the pullback
sense, i.e.

lim
t→∞

d(ϕ(t , θ−tω)D(θ−tω)|A(ω)) = 0; (4.1)

(ii), a forward random attractor in D, if Â attracts any closed random set D̂ ∈ D in the forward
sense, i.e.

lim
t→∞

d(ϕ(t , ω)D(ω)|A(θtω)) = 0; (4.2)
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Random attractors: classical theory

Existence of random attractor

Pullback absorbing set: B̂ ∈ D in a universe D such that B̂ absorbs all sets in D, i.e. for any
D̂ ∈ D, there exists a time t0 = t0(ω, D̂) such that

ϕ(t , θ−tω)D(θ−tω) ⊂ B(ω), for all t ≥ t0.

Theorem (Crauel, Flandoli, Schenk-Hoppe 1998: Existence and Uniqueness of Random
Attractor)

Given a universe D, assume there exists a random compact pullback absorbing set B̂ ∈ D which
is forward invariant. Then there exists a unique random pullback attractor (which is then a weak
attractor) in D, given by

A(ω) =
⋂
t≥0

ϕ(t , θ−tω)B(θ−tω).

Application: prove that a system has an absorbing set.
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Random attractors for RDE: finite dimension

Random attractors for RDE: finite dimension

We would like to investigate the RDE of the form

dyt = f (yt )dt + g(yt )dxt . (4.3)

(Hf ) f is strongly dissipative, i.e. there exists D1,D2 > 0 such that

〈y1 − y2, f (y1)− f (y2)〉 ≤ D1 − D2‖y1 − y2‖2, ∀y1, y2 ∈ Rd ; (4.4)

in addition f is of linear growth in the perpendicular direction, i.e. there exists Cf > 0 such that∥∥∥f (y1)− f (y2)−
〈f (y1)− f (y2), y1 − y2〉(y1 − y2)

‖y1 − y2‖2

∥∥∥ ≤ Cf

(
1 + ‖y1 − y2‖

)
, ∀y1 6= y2; (4.5)

(Hg ) g belongs to C3
b (Rd , (Rm,Rd )) such that

Cg := max
{
‖g‖∞, ‖Dg‖∞, ‖D2

g‖∞, ‖D3
g‖∞

}
<∞; (4.6)

(HX ) for a given ν ∈ ( 1
3 ,

1
2 ), x belongs to the space Cν(R,Rm) of all continuous paths which is of

finite ν−Hölder norm on any interval [s, t]. In particular, x is a realization of a stationary stochastic
process Xt (ω), such that x can be lifted into a realized component x = (x ,X) of a stationary
stochastic process (x·(ω),X·,·(ω)), such that the estimate

E
(
‖xs,t‖p + ‖Xs,t‖q

)
≤ CT ,ν |t − s|pν ,∀s, t ∈ [0,T ] (4.7)

holds for any [0,T ], with pν ≥ 1, q = p
2 and some constant CT ,ν .
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Random attractors for RDE: finite dimension

Random attractors for RDE: finite dimension

(HA) There exists a duration r > 0 and constants D3 > 0 of the deterministic system such that, for
any starting point y0 /∈ A, there exists a point µ0 = µ0(y0) ∈ A satisfying

‖µr (y0)− µr (µ0)‖ ≤ e−D3‖y0 − µ0‖. (4.8)

Theorem (LHD-2020: finite dimension)

Assume that system (3.4) satisfies the assumptions (Hf ), (Hg), (HX ), then there exists a random
pullback attractor A(ω) such that |A(·)| ∈ρ for any ρ ≥ 1. If in addition (HA) and f is global
Lipschitz continuous then the random attractor is upper semi-continuous with respect to the noise
intensity in the sense that A(ω)→ A (w.r.t. the Hausdorff semi-distance) as Cg → 0, both in the
almost sure and in Lρ senses. Moreover, if f is strictly dissipative then A(ω) is a singleton
provided that Cg is sufficiently small.

Sketch of the proof: Doss-Sussmann technique to conjugate the RDE to a random differential
equations. Under the assumptions (Hf ), (Hg ), (HX ), (HA) and f ∈ Lip, the random attractor is
upper semi-continuous, i.e.

lim
C̄g→0

dH

(
A(ω)|A

)ρ
= 0 a.s. and lim

C̄g→0
E dH

(
A(·)|A

)ρ
= 0, ∀ρ ≥ 1. (4.9)
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Random attractors for RDE: finite dimension

Random diffeomorphism

(Hf ) implies the existence of a global attractor A of µ̇ = f (µ). Example: f (y) = αy − y3.
the solution φ·(x, φa) of dφu = g(φu)dxu , u ∈ [a, b], φa ∈ Rd is C1 w.r.t. φs , and
∂φ
∂φa

(·, x, φa) is the solution of the linearized system

dξu = Dg(φu(x, φs))ξudxu , u ∈ [a, b], ξa = Id , (4.10)

where Id ∈ Rd×d denotes the identity matrix. Moreover

‖φb(x, φa)− φa‖ ≤ |||φ|||p−var,[a,b] ≤ 8CpCg |||x|||p−var,[a,b] ; (4.11)∥∥∥ ∂φ
∂φa

(t , x, φa)− Id
∥∥∥ ≤ 16CpCg |||x|||p−var,[a,b] . (4.12)

Cass-Litterer-Lyons (2013): Greedy times
τ0 = min I, τi+1 := inf

{
t > τi : |||x|||p−var,[τi ,t]

= γ
}
∧max I. Assign

N(γ, x, I) := sup{i ∈ N : τi ≤ max I}.

Lemma

For any λ > 0 small enough, there exist constants δλ,Cλ > 0 such that for any solution µt of the
ODE lying in the global attractor A, the following estimates hold

‖yt − µt‖ ≤ ‖y0 − µ0‖e−δλt + CλN
( λ

16CpCg
, x, [0, t]

)
. (4.13)
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Random attractors for RDE: finite dimension

Sketch of the proof

Associate each solution yt (x, y0) with a solution µt (µ0) of the deterministic system µ̇ = f̄ (µ)
which starts at µ0. Consider the difference y∗t := yt (y0)− µt (µ0) for t ≥ 0. Similar to Hairer
& Ohashi (2007), the key point is to prove that for any ρ ≥ 1 there exists an η ∈ (0, 1) and an
integrable random variable ξ1(ω) = ξ1(Cg |||x(ω)|||p−var,[0,1]) such that

‖y∗1 ‖
ρ ≤ η‖y∗0 ‖

ρ + ξ1(ω). (4.14)

Assign µ∗t = µt (y0)− µt (µ0) and ht := y∗t − µ∗t , then h satisfies

h0,t =

∫ t

0

[
f (hu + µu + µ∗u )− f (µu + µ∗u )

]
du +

∫ t

0
g(hu + µu + µ∗u )dxu .

Y-L estimate gives

‖hs,t‖ ≤
∫ t

s
Lf ‖hu‖du + Cg‖xs,t‖+ C2

g‖Xs,t‖+ Cp

{
|||X|||q−var,[s,t]2

∣∣∣∣∣∣[g(y)]′
∣∣∣∣∣∣

p−var,[s,t]

+ |||x |||p−var,[s,t]

∣∣∣∣∣∣∣∣∣Rg(y)
∣∣∣∣∣∣∣∣∣

q−var,[s,t]2

}
. (4.15)
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Random attractors for RDE: finite dimension

Sketch of the proof

One can then prove that∣∣∣∣∣∣∣∣∣h,Rh
∣∣∣∣∣∣∣∣∣

p−var,[s,t]
≤

∫ t

s
2Lf

(
‖hs‖+

∣∣∣∣∣∣∣∣∣h,Rh
∣∣∣∣∣∣∣∣∣

p−var,[s,u]

)
du +

1
2

∣∣∣∣∣∣∣∣∣h,Rh
∣∣∣∣∣∣∣∣∣

p−var,[s,t]

+ 4CpCg |||x|||p−var,[s,t]

(
1 + 4Cp |||µ|||1−var,[s,t] + 4CpD(1 + ‖y∗0 ‖

β)
)

︸ ︷︷ ︸
=:L1

,(4.16)

whenever 4CpCg |||x|||p−var,[s,t] ≤
1
2 , thus by the continuous Gronwall lemma,

‖hs‖+
∣∣∣∣∣∣∣∣∣h,Rh

∣∣∣∣∣∣∣∣∣
p−var,[s,t]

≤ (‖hs‖+ 2L1)e4Lf (t−s)

whenever 4CpCg |||x|||p−var,[s,t] ≤
1
2 . Greedy time technique yields

‖hr‖ ≤ e4Lf r
(

1 + 4Cpr‖f‖∞,A + 4CpD
)

8CpCg |||x|||p−var,[0,r ] N
( 1

8CpCg
, x, [0, r ]

)
︸ ︷︷ ︸

=:ξ0(x)

(1+‖y∗0 ‖
β).

(4.17)
From (HA) one can choose µ0 depending on y0 such that ‖µ∗r ‖ ≤ ‖µ∗0‖e

−D2r . Jensen’s
inequality for ‖y∗r ‖ρ ≤ (‖hr‖+ ‖µ∗r ‖)ρ then derives (4.14).
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Random attractor for RDE: infinite dimension

Rough evolution equation

We would like to investigate the rough evolution equation

yt = S(t)y0 +

∫ t

0
S(t − u)f (yu)du +

∫ t

0
S(t − u)g(yu)dBH

u , t ≥ 0, (4.18)

where f is globally Lipschitz continuous and g ∈ C3
b .

H = 1
2 : Caraballo & Kloeden & Schmalfuss (2011) proves that there exists mean square

attractors (L2 norm), with exponential convergence rate, thus also in the pathwise sense.

H > 1
2 : LHD & Garrido-Atienza & Neuenkirch & Schmalfuss (2018) proves for evolution

equation, criteria quite complicated. Where A-negative definite with −λ, and F is globally
Lipschitz continuous with cDF . G ∈ C1, globally Lipschitz continuous with cDG. But BH is
required to be a small noise!!!

H ∈ ( 1
3 ,

1
2 ): expect that for small there exists a global pullback attractor Ag which converges

to A as Cg → 0. The scheme is similar to finite dimension, but

ht = S(t)h0 +

∫ t

0
S(t−u)

[
f (hu +µu +µ∗u )− f (µu +µ∗u )

]
du +

∫ t

0
S(t−u)g(hu +µu +µ∗u )dxu .

And one has to use the norm ‖h‖∞,β,β,[0+,t] = ‖h‖∞,[0,t] + |||(h, h′)|||β,β,[0+,t].
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Thank you!
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