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Stochastic stability: moment approach

@ Asymptotic stability for deterministic systems: Lyapunov (1892) e — § language.

@ Stochastic stability for Markov systems: Khasminskii (1979), Skorohod (1987), ...

@ Exponential stability: Molchanov, Arnold, Pardoux, Baxendale, Mao... and many others in
control theory.

dy: = [Ay: + f(y1)ldt + g(y1)dBt, x(0) = xo € R, (1.1

A c RI%9 neg. def. A\s, f: R — RY, g : RY — RIX™ glob. Lischitz continuous w.r.t. Cy, Cg.
Applying It6’s formula

dlly:|®

(20 Ave) + 2001, f(02)) + lgy)I12) ot + 2(y2, 9(e) dBr) (1.2)
(=204 +2C; + C2) el + llgy) 12 ot + 2(y2, () dBy). (1.3)
Applying the expectation, E(y:, 9(y:)dB:) = 0, thus

dE|lyl? < (—2Aa + 2C; + CR)E|yi|[Pdt.

IN

Applying continuous Gronwall lemma
— —C _102
Elly:|? < Ellyo[|2e~2*=Cr—2 %),

= E||y:|| is exponentially decaying to zero given A4 — C; > %C2, which follows that || y:||
converges exponentially and almost surely to zero due to Borel-Catelli lemma.
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Motivation example

Stochastic stability: pathwise approach

Pathwise approach
t t
yi= 900+ [ o(t=9)fe)ds+ [ (= )g(ys)aBs

where ®(t) = e/t is the semigroup generated by A. In addition, ||®(t)|| < Cae~4l, vt > 0.
First, forany t € [n,n+ 1), it follows from (1.1) and the global Lipschitz continuity of f that

Il < oyl + [ ot - 9)e)las+ | [ of— s)atre)as|

IN

t t
Cae™ ol + [ Cae™41=9) (Cylysl| + 17O ) o + || [ (2 = 9)g(ye)aBs

IN

C t
Gae ol + S AO)I(1 = e41) + CaCr [ 4=y + .
A

where 5t := H J3 ®(t — s)g(ys)dBs . Multiplying both sides of the above inequality with e*a! yields

C t
llytlle*at < Callyoll + lelf(o)ll(e“’ —1)+ B + CACf/O e |ys|| ds.
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Motivation example

Stochastic stability: pathwise approach

By applying the continuous Gronwall Lemma, we obtain

C
lydle™st < Callyoll + S2IA(O)[(X4" — 1) + i
! CaCy(t—s) Ca AaS ApS
+ [ CaCre = [Callyoll + IO (£34° ~ 1) + s ds.

Once again, multiplying both sides of the above inequality with e~ €4St and assigning
A=A — CACf ylelds

_ C _
Iyl < Callyolle™ A%+ 2 #(0)]| (X — e~ ) + pre
i C
+ / CaCre~ %% [Callyoll + Y2 £(O)[[(€™4° — 1) + Bse™s* | dis
0 A

C t
< Callyoll + Z2IFQ) (X ~ 1) + Bre™ + /0 CaCiBse™ds. (1.4)

Next, due to isometry of It6 integral

2

t t t
B6f =& [ ot - s)a)a8s| = (©) [ Ele(t - s)a(ys)IPds < GGE [ eIl ps|as

= isometry assumption can be relaxed upto a constant C!
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Motivation example

Stochastic stability: pathwise approach

Then by applying the inequality
1 1 1
(@a+b+c)P<(1+e@+(1+ )1 +P+(1+ )14+ =)?, Vab,cee>0
€ € €

and

to (1.4), we obtain for any 0 < ¢ < X and any ¢, € > 0 the estimate

1 1 t
Ely P < (1+ *)(1 + :)Cﬁe_w_g)'ﬁllyo||2 +(1 +€)C§C§/ e 2A— =) yg| 2 ds
0

1+ )(1+ec2 2’// 20- o)1= )|, |[2du ds. (1.5)

Multiplying both sides of (1.5) by e2(*~2)t and assigning ~; := e2(*~2)I[||y;||2, we derive an
inequality

1 1
'yt§(1+;)(1+E)C§70+(1+6)Ci02/ vsds+ (1 + )(1+ )C2C2 '// s .
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Stochastic stability: pathwise approach

Lemma (Gronwall lemma for iterated integrals)

Assume that T, a, b,c > 0 and v > 0 satisfies

t t s
v < ayo + b/ vsds + c/ / yduds, Vtelo,T]. (1.6)
0 o Jo

Then ~; < aype¥2! forall't € [0, T], where v» > 0 > v4 are two roots of the quadratic
2 —bv—c=0.

It then follows from the iterated Gronwall lemma that v < (1 + %)(1 + 1g)Cf‘fyoe"Z', where
vo = (o, €, €) is the positive root of the quadratic equation

1 _ 12
V2 —(1+€¢)C5C — (1+ E)“ +e)C§C§2—; =0. (1.7)

Hence E|ly:||> < (1+ 1)(1 + %)Cﬁ]E\\yo\|2e‘2()‘_9_L22)t, which derives the sufficient condition for
the exponential stability as follows
2
1

_ 1 2 N2 1 2 22 & _ 15
A== CaCr> A’{g+4(1Jre)cAcngLtc,\cg[(we) Ch+ = (1+E)] } (1.8)

inf
<e<
e>0

= compare with A = Ag — C5Cr > %CS: still good enough with relaxed It isometry!
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Motivation example

Stochastic stability: pathwise approach

Question: How to estimate H Jo ®(t — 8)g(ys)dBs

in general? Answer: rough path theory!
(i) The following estimate holds: forany0 < a< b < c¢

| [ otc - ateax

< e O0n(n 2, 1) (0N + iyl + .

p—var,[a,b] )’ (1.9)
where
w(X, (8, B]) = 2CoCall + IAI(B — @]{ C& IXIZ_vurfaty ¥ Co I¥lp—var ) - (1.10)
(i) zz =yt — yt. Thenforany0 <a< b<c
b
| [ et~ 9)la7) ~ arallaks]| < &4 Dn(x, a, BOACK, 2, ) (I1zall + |2 A, o)
a
(1.11)
for some function A. ||z, %[l ,_.,, (4,5 Can be estimated by za.
C
(i) Iyl < Caloll + == 11Ol (¥ ~1) (1.12)
+eAAZeAk (x, A )[HQ( I £ RY vie A
yk” + ‘Hyv H|p var,Ay |’ € An

k=0

where Ay := [k, k + 1], A := Xq — CaCy, and ||y, Hyl"p—vur,Ak depends linearly on y, = discrete
Gronwall lemma to obtain the absorbing set. (details in next slide)
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Motivation example

Stochastic stability: pathwise approach

Assign a:= Cal|yoll, uk := [lyxl|e**, k > 0, one obtains

n—1 n—1
un < a+ Y GX,A)ux + Y eMH(xX, A). (1.13)
k=0 k=0
Discrete Gronwall Lemma: Let a be a non-negative constant and up, an, 8 be non-negative
sequences satisfying

n—1 n—1
Up<a+ >y oklx+ > Bk, ¥n>1
k=0 k=0

then
n—1 n—1 n—1
up < max{a,uo} [J(1+ )+ > B [] (140, vn>1. (1.14)
k=0 k=0  j=k+1
By assigning w with 6_,w and using the shift property
n—1
1yn(K(0-n), Yo (0-nw)) | < Callyo(O-nw)lle™" TT [1 + G(x(0—yw), [=1,0])] + biw), (1.15)
k=0
where
oo k—1
b(w) == > e MH(x(0_kw), [-1,0]) [ ] [1 + G(X(0_jw), [—1,0])]. (1.16)
k=1 j=0
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Rough differential/evolution equations
[ IeYole}

Rough integrals

Norms and spaces

@ For p > 1, CP~¥¥([a, b], H): the Banach space with finite norm

1/p
ullp fae) = lltall + Nullp o = l1Uall + ullp o = (sup > wp) < oo.
[s tlen

@ For 8 € (0,1), CA~Hl([a, b], H) the Banach space equipped with norm

llu(t) — u(s)|l
u = ||lu +Jlu =|u + sup LN
lUlloo,p,1a,61 = IlUlloo,[a,b) + NUll g 1,61 = 1Ullco,[a,6) ags<?§b t—5)

@ Fora,f € (0,1), C*#([ay, b], H), C*#([a, b_], H) the Banach spaces equipped with norms

[lu(t) — u(s)]|

u = u su S—a a2
lull oo, e, 8, [, b1 Ul oo, (2,51 +a<s<€§b| | t—5)7

llu(t) — u(s)||

u = u + sup |b—t|*——"——7F.
H ”oo,a,ﬁ,[a,b,] ” Hoo,[a,b] a§s<t<b| | (t*S)ﬂ

® One can prove that |l 4 a. & = SUPacs<5(S — @)* I¥ll5 5.5 this
CP(Ja, bl) C CP([ay, b]) N 74 ([a, b_]) with lully s (a, 5 < 1b— &l 1Ull 5 ga 5
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Rough differential/evolution equations

o] Jele}

Rough integrals

Rough paths

In the simplest form for 3 € (%, 3). a couple x = (x,X), with x € C#([a, b], H) and
X e Csﬁ([a, b]?, H® H) is called a rough path if they satisfy Chen’s relation

Xyt = Xsu — Xyt = Xs,u @ Xu,t, va<s<u<t<h. (2.1)

We write X5t = (X ® X)s,t =: fs' Xs,u ® dxy. In a general form, (y ® x)s,t =: f; ¥s,u ® dxy satisfies
Chen’s relation
Y@ X)s,t = (Y @X)s,u — (Y ® X)u,t = Ys,u @ Xut-

Denote by C#([a, b]) C C? @ C?P the set of all rough paths in [a, b], then C? is a closed set but
not a linear space, equipped with the rough path semi-norm

1
Xl 0,5 = IXHg gy + IXIZ, 1y o < 00 (2.2)

Examples in 1D

© X; = [y asdBs = Xs = [{ Xs,udXy = 3 X2, — § [{ &du. Integral in the It6 sense.

° X;=B" = Xq:= [} BB = §(B,)? - %(tz"’ = sZH>. Integral in the
Skorohod-Wick-1t6 sense.

© [x,2]s,¢ = x5, — 2Xst = [X,2]s,t = [X, 2]s,u + [X,2]u,t = [X,2]o,. € C* is a Holder
continuous path.
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Rough differential/evolution equations

le]e] lo}

Rough integrals

B > 3: Young integrals

@ Consider y € C8([a, b], V ® H) and x € C?([a, b], H), there exists a Young integral f: ydx
defined by

@ Young-Loeve (Y-L) estimate

t
H/ YudXy — YsXs t
s

| < Kalt = S22 Uyl g WXl -

In fact, we can prove using fractional calculus that

t
H/s YudXu — YsXs,t

| < Ka (s looyts,n + I¥lg. 15,1 ) (I%tlloo 0 + DXlg e ) -

L.H.Duc (VAST MIS) rough systems



Rough differential/evolution equations

ooo0e

Rough integrals

B € (3, 3): Rough integrals

@ Apath y € C?([a, b], V® H) is then called to be controlled by x € C?([a, b], H) if there exists
atube (y/, RY) with y’ € CP([a,b], V ® H® H), RY € C?3(A?([a, b]), V ® H) such that

Yot = Yexsi+ R, VYminl<s<t<maxl

y’ is called Gubinelli derivative of y, WhICh is uniquely defined as long as x € C8 \ C?8 is
truly rough (works for fBm B, H € (1}, 1] FH[Chapter 6]).

@ Denote Fst := ysXs,t + ¥eXs,t- Then

372
0Fsut:=Fst— Fsu— Furt= _y;,uxu,t - R?;/,uxu,t
= 16Fsumell < It = s (Uxlls go.0 |7 o, negs,g + 1Yl g5, 1%ll2s, 0215, )

Thanks to the sewing lemma, the rough integral fst Yudxy can be defined as

/ Yudxy :: Z [yuxu,v + yuXu v]

[u vlen

Moreover, one gets Y-L typed estimate:

t
H / YudXy —,VsXs,t_,Véxs,!
s

‘ = Cﬁlt—SPB ( |"X“|B,[s,r] |||RyH|25,A2[s,t]+H|y,|||3,[s,t] |||XH|25,A2[SJ] )
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Rough differential/evolution equations
®0

Rough differential equations (RDEs)

Existence and uniqueness theorem: RDEs

@ Finite dimension: RDE dy; = f(y:)dt + g(y:)dx; is understood in the integral form

t t
Yi= Yo+ /O F(ys)ds + /O 9(ys)s. (2.3)

@ Riedel and Scheutzow (2017): f is one sided Lipschitz and linear growth in perpendicular
direction. g € C? as usual. Solution of the form (y, y’) with y, y’ € C5, y’ = g(y), which is
solved by Doss-Sussmann technique.

@ Infinite dimension: consider rough evolution equation

dyr = [Aye + f(y1)]dt + g(yt)dxt, (2.4)
with the solution understood in the mild form
t t
yi= Sy + [ St=9)fyds+ [ S(t=)glye)ds. (25)

Key task: define [ S(t — s)g(ys)dxs for S(-) € CPB.

@ Garrido-Atienza & Lu & Schmalfuss (2015): define rough integral using fractional calculus
and solution definition by Hu & Nualart (2009).

@ Hesse & Neamtu (2019): define rough integrals for controlled rough path y € C#:# and
x € CP using a modified sewing lemma.

@ Ouridea: A hybrid form, i.e. define rough integral for controlled rough path using fractional
calculus. Advantage: simpler scheme with explicit Y-L typed estimate, and solution (y, y’).
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rential/evolution equations

Rough differential equations (RDEs)

Fixed point argument

@ Back to Gubinelli: solve the equation on some small time interval [0, 7] for
(v,¥") € MZP (%0, 9(0)) such that | (v, ')l 5 5.0, - < 1 and

t t
Vi am+£anwmm+éw—mmm&
i = g

Many ways to choose seminorm, but the simplest one (works well for Cg < 1) is
Ny Ms6.10,.71 = 1Y Ng,5. 10,y 1Y, Noostos 11 5 25,10, ry FIFE, Moo, f0, ry < 1
For general Cy, better use the exponential weighted seminorm |||(y,y/)|||ﬁ7ﬂ,p7[0+ﬁ].

@ Examplesin 1D: dy = pydt + oydx; = yt = ysexp{u(t — s) — %Z[x, 2]s,t + oXs,t} Where
[X7 2]511 = Xs,t = QXSJ.
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Random dynamical systems from RDEs

Random dynamical systems

[o]

A (continuous) random dynamical system is an NDS (6, ¢) which in addition has the following
properties:

(f), The driving system 6 is an ergodic dynamical system (2, F, P, (6t):c7), i.e., the base

(2, F,P) is a probability space and (t,w) — 6;w is a measurable flow which is ergodic under P.
ii, The cocycle (t,w, X) — ¢(t,w)x is measurable w.rt B ® F ® B(X) and B(X), respectively,
where B(X) is the Borel o—algebra of X, such that the family ¢(t, w,-) = ¢(f,w) : X — X of
self-mappings of X satisfies the cocycle property

»(0,w) = idy, p(t+ s,w) = ¢(t,0sw) o p(s,w), VI, € T, Yw € Q. (3.1)

V.

{w}x X {8(s)w} x X
{0(s+ thw} x X

le property:
t,wz

t,8(s)w) o (s, w)z
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Random dynamical systems from RDEs

Generation of RDS from RDE

@ Finite dimension - Bailleul & Riedel & Scheutzow (2018)
@ Infinite dimensional case: Garrido-Atienza & Lu & Schmalfuss (2010,2016), Hesse & Neamtu
(2020)...

T2(R™) = 1@ R™ & (R™ @ R™M), is the set with the tensor product
(1.9,05)®01, ', /) = (1,g'+h",g'®h' +g*+1?), vg=(1,g',0%),h=(1,h'", %) € TE(R™).
Then it can be shown that (T2(R™), ®) is a topological group with unit element 1 = (1,0, 0).

For 8 € (%, v), denote by COP~V([a, b], T2(R™)) the closure of C>([a, b], T2(R™)) in

CP=Y([a, b], T2(R™)), and by Cg’p_“"(R, T2(R™)) the space of all x : R — R™ such that

x|; € COP—var(], T2(R™M)) for each compact interval / C R containing 0. Then Cg’p_““(R, T2(R™))
is equipped with the compact open topology given by the p—variation norm, i.e the topology
generated by the metric:

1
dp(X1,X2) == > 27(||X1 — X2llp—var,[—k,k] A 1)-
k>1

As aresult, it is separable and thus a Polish space. o
Let us consider a stochastic process X defined on a probability space (2, F, P) with realizations in

(CS""“’"(R, T2(R™)), F). Assume further that X has stationary increments.
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Random dynamical systems from RDEs

Generation of RDS: rough equations

Assign
Q:=CcJPT (R, TA(R™))

and equip with the Borel o— algebra F and let P be the law of X. Denote by ¢ the Wiener-type shift
(61w). = wi ' @ wir., Vt € R,w € COPT(R, TE(R™), (3.2)

and define the so-called diagonal process X : R x Q — T2(R™), X;(w) = w; forall t € R,w € Q.
Due to the stationarity of X, it can be proved that 6 is invariant under PP, then forming a continuous
(and thus measurable) dynamical system on (2, 7, P) [BRSch17 -Theorem 5]. Moreover, X forms
a p— rough path cocycle, namely, X.(w) € Cg’p_v“"(R, T2(R™M)) for every w € Q, which satisfies
the cocyle relation:

Xirs(w) = Xs(w) @ Xi(Osw),Vw € Q, 1,5 € R,

in the sense that Xs s+ = X¢(0sw) with the increment notation Xs st := X;1 R Xyt Itis
important to note that the two-parameter flow property

Xs,u X Xu,t = XSJ,VS, teR

is equivalent to the fact that X;(w) = (1, x¢(w), X ¢(w)), where x.(w) : R — R™ and
X. . (w) : I x I - R™®R™ are random funtions satisfying Chen’s relation relation (2.1).
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Random dynamical systems from RDEs

Generation of RDS: rough equations

In particular, due to the fact that || X.(6pw)
Birkhorff ergodic theorem that

No—var,is,5 = IX- (@)l p—var,[s-h, 1+ 4y it fOllows from

1
r(x.p) —nmsup( Zme R — 11]) = (EIXOI_ye1.9)? =T(O) 33

for almost all realizations x; of the form X:(w). We assume additionally that (2, F, P, 6) is ergodic.

Theorem

Let(Q,F,P, ) be a measurable metric dynamical system and letX : R x Q — T2(R™) be a p-
rough cocycle for some 2 < p < 3. Then there exists a unique continuous random dynamical
system ¢ over (2, F, P, 0) which solves the rough differential equation

dyr = f(y1)dt + g(y1)dX¢(w), t > 0. (3.4)
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Random attractors for dissipative systems
[ 1]

Random attractors: classical theory

Random attractors

Universe: D a family of random sets M = {M(w)}.,cq which is closed w.r.t. inclusions (i.e. if
Dy € D and D, C Dy then D, € D).

Definition (Crauel & Flandoli-1994)

An invariant random compact set A € D is called .
(), a pullback random attractor in D, if A attracts any closed random set D € D in the pullback
sense, i.e.

tl;n;@ d(p(t, 0—tw)D(0_iw)|A(w)) = 0; (4.1)

(i), a forward random attractor in D, if A attracts any closed random set D € D in the forward
sense, i.e.
lim d(p(t,w)D(w)|A(Bw)) = 0; (4.2)
t—o0

V.

Figure 2.1: Forward attraction versus pullback attractior

L.H.Duc (VAST MIS) rough systems



Random attractors for dissipative systems
oe

Random attractors: classical theory

Existence of random attractor

Pullback absorbing set: B € D in a universe D such that B absorbs all sets in D, i.e. for any
D € D, there exists a time ty = ty(w, D) such that

o(t,0_1w)D(0_w) C B(w), forall t > to.

Theorem (Crauel, Flandoli, Schenk-Hoppe 1998: Existence and Uniqueness of Random

Attractor)

Given a universe D, assume there exists a random compact pullback absorbing set B € D which
is forward invariant. Then there exists a unique random pullback attractor (which is then a weak
attractor) in D, given by
Aw) = [ @(t, 0—1w)B(6_1w).
t>0

Application: prove that a system has an absorbing set.
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Random attractors for d
[ IeYelelo)

Random attractors for RDE: finite dimension

Random attractors for RDE: finite dimension

We would like to investigate the RDE of the form

dy: = f(yr)at + g(yr)dx;. (4.3)
(Hy) f is strongly dissipative, i.e. there exists Dy, D> > 0 such that
(y1 — yo, f(y1) — f(y2)) < Dy = Dallys — y2|?,  ¥y1,¥2 € RY; (4.4)

in addition f is of linear growth in the perpendicular direction, i.e. there exists Cs > 0 such that

[ty = vy - LLO=ORIZIIN I | < (14 1y el w1 23 (45)

(Hg) g belongs to C3(RY, (R™, RY)) such that
Cg := max{l|glloc, 1Dglloc, 10310, |1 D3llec } < oo (4.6)

(Hx) for a given v € (3, %), X belongs to the space C* (R, R™) of all continuous paths which is of
finite »—H®&lder norm on any interval [s, t]. In particular, x is a realization of a stationary stochastic
process X;(w), such that x can be lifted into a realized component x = (x, X) of a stationary
stochastic process (x.(w), X...(w)), such that the estimate

E(Ixs.llP + [Xs,419) < Crult — s, Vs, t € [0, T] (4.7)

holds for any [0, T], with pv > 1,9 = g and some constant Ct ,,.
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Random attractors for d
o] Yolelo)

Random attractors for RDE: finite dimension

Random attractors for RDE: finite dimension

(H_4) There exists a duration r > 0 and constants D3 > 0 of the deterministic system such that, for
any starting point yo ¢ A, there exists a point ug = (o) € A satisfying

llar (Vo) — r(p0) 1l < €2 lyo — paol- (4.8)

Theorem (LHD-2020: finite dimension)

Assume that system (3.4) satisfies the assumptions (Hr), (Hy), (Hx), then there exists a random
pullback attractor A(w) such that |A(-)| € for any p > 1. If in addition (H ) and f is global
Lipschitz continuous then the random attractor is upper semi-continuous with respect to the noise
intensity in the sense that A(w) — A (w.r.t. the Hausdorff semi-distance) as Cg — 0, both in the
almost sure and in LP senses. Moreover, if f is strictly dissipative then A(w) is a singleton
provided that Cgq is sufficiently small.

Sketch of the proof: Doss-Sussmann technique to conjugate the RDE to a random differential
equations. Under the assumptions (H¢), (Hg), (Hx), (H4) and f € Lip, the random attractor is
upper semi-continuous, i.e.

e dH<A(w)|A>p -0 as and lim EdH<A(-)|.A)p -0, Vp>1.  (49)
Cg—0 Cg—0
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Random attractors for d

(ele] lele]

Random attractors for RDE: finite dimension

Random diffeomorphism

@ (Hy) implies the existence of a global attractor A of i = f(u). Example: f(y) = ay — y5.
o the solution ¢.(X, ¢a) of doy = g(¢u)dxu, U € [a,b],da € RYis C! w.rt. ¢s, and

£2(-,X, ¢a) is the solution of the linearized system
dfu = Dg((ﬁu(x, ¢S))£UdXU7 ue [a7 b]7£a = ld7 (410)
where Id € R9%9 denotes the identity matrix. Moreover
[66(X, da) = ¢all < NPllp—var,ja,6) < 8CoCo XNl p—var,fa,t ¢ (4.11)
H—(r X,9a) — l0|| < 16CoColXllp i fas) (4.12)

@ Cass-Litterer-Lyons (2013): Greedy times
To =minl, Tiyq:=inf {t > T |||X|||p_vﬂr’[7_ht] = 'y} A max /. Assign
N(v,x, ) :=sup{i € N : 7; < max [}.

Lemma

For any A > 0 small enough, there exist constants ¢, Cy > 0 such that for any solution p; of the
ODE lying in the global attractor A, the following estimates hold

lye — pell < llyo — polle ™ + CAN( x,[0,1). (4.13)

_r
16C,Cq’
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Random attractors for RDE: finite dimension

Sketch of the proof

@ Associate each solution y;(x, yp) with a solution (1) of the deterministic system i = ()
which starts at 9. Consider the difference y;* := y1(yo) — ut(uo) for t > 0. Similar to Hairer
& Ohashi (2007), the key point is to prove that for any p > 1 there exists an € (0, 1) and an
integrable random variable &1(w) = &1(Cy ||\x(w)H|pfvar’[0’1]) such that

2112 < nllyg 1P + & () (4.14)
@ Assign uf = p(¥o) — pt(po) and by ==y — pf, then h satisfies
t t
oo = [ [fCh+ o+ w3) = o+ )] oo+ [ b+ -+ )
0 0

Y-L estimate gives

t
el < [ Lilhulloa+ Collxel+ 31Kl + o 1Xg—vae 52 NI Npvar g
S

ey g (4.15)

——
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Random attractors for RDE: finite dimension

Sketch of the proof

@ One can then prove that

t
| T (RS O N .
+4CpCq Xl p—yar, s, 1 (1 +4Cp [l 4lls —var 5,7 +4CpD(1 + ||YJ|\B))4-1

=:L4

whenever 4CpCy [1X[l p_var s, < 2, thus by the continuous Gronwall lemma,

sl + [ 8] g < Clhsll 4 2L et

whenever 4CpCy [1X[l 5 _yar 5,7 < 2 Greedy time technique yields

]l < *" (1 + 4Cprilfllco, 4 +4CoD)8C,Cy mxmp,m,[o,,]fv(sc & % 10:) (416 17).

=:£0(x)
(4.17)
@ From (H_4) one can choose pp depending on yg such that ||u; || < Hua‘He*DZ’. Jensen’s
inequality for [|y/||? < (||hr]| + [l |])? then derives (4.14).
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Random attractor for RDE: infinite dimension

Rough evolution equation

We would like to investigate the rough evolution equation
t t
yi=Stw+ [ St-wiwdu+ [ St-uwgde, =0, (@18)
0 0

where f is globally Lipschitz continuous and g € Cg.
e H= %: Caraballo & Kloeden & Schmalfuss (2011) proves that there exists mean square
attractors (L2 norm), with exponential convergence rate, thus also in the pathwise sense.

o H> %: LHD & Garrido-Atienza & Neuenkirch & Schmalfuss (2018) proves for evolution
equation, criteria quite complicated. Where A-negative definite with —\, and F is globally
Lipschitz continuous with cpr. G € C', globally Lipschitz continuous with cpg. But B is
required to be a small noise!!!

@ He (%, %): expect that for small there exists a global pullback attractor Ay which converges
to A as Cg — 0. The scheme is similar to finite dimension, but

t t
= SO+ [ St =) [fthu -+ 155) = Hpa-t 1) i | S(t=u)ah+ -+ )
0

And one has to use the norm \|h||0073’5,[0+,,] = ||h||oo,[0,[] =+ |I(h, h’)|||573,[0+y,].
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