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Motivation

Stochastic control often assumes that a continuous flow of data is
available.

But sometimes it is expensive to obtain data (e.g. medical records
of patients).

Need to optimise timing of measurements, and make decisions based
on limited data.

We would like a version of stochastic control where the state can
only be known if a cost is paid.
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Motivation

Source: Winkelmann et al. [2]

Figure 1: Schematic realisation of the control framework.

Our information flow should only consist of our past observations.
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Setup

Let (Ω,F ,P) be a probability space.

Let X = (Xn)n∈N be a Markov chain with state space S.

Consider a finite control set I := {1, . . . , d}.
The transition matrix depends on the control: P = Pi .

Assume the distribution of X is known a priori, but the realisation of
each Xn comes with an upfront cost cobs.
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Setup

Let τ = {τk}∞k=0 be a sequence of strictly increasing random times.
Define for all t ≥ 0,

F (X ,τ)
n := σ

{
(τ0,Xτ0 ), (τ1,Xτ1 ), . . . , (τk ,Xτk ) : k = sup{j : τj < n}

}
.

Now we require that τk are predictable stopping times (with respect to
F (X ,τ)).

Reason? We want τk to be F (X ,τ)
τk−1 -measurable.

i.e. at τk−1, we have our ‘decision rule’ for the next observation time τk .
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Setup

F (X ,τ) is our observation filtration, and τ is our observation
sequence.

For each τk ∈ τ we associate a random variable ιk , which is I-valued and
F (X ,τ)
τk -measurable. This represents the switching locations.

The double sequences α = (τk , ιk)k≥1 form the set of admissible controls
(denoted by A) in our observation control problem.
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Observations Process

For any time n, define

τ̃n = max{τk ∈ τ : τk < n}, ι̃n = ιτ̃n (1)

so the pair (τ̃n, ι̃n) is the most recent observation and switching location.

Define the observations process X̃ by

X̃n = Xτ̃n . (2)

Note that F X̃ = F (X ,τ). The Markov property of X gives the relation

E[f (Xn)|F X̃
n ] = E[f (Xn)|X̃n] (3)
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Observations Process

Consider the measure-valued process µ defined by

µn(dx) = P(Xn ∈ dx |F X̃
n )(

= P(Xn ∈ dx |X̃n)
)
. (4)

which is the conditional distribution of Xn given its past observation
history.

In fact each realisation of µn can be characterised by the values of
(τ̃n, X̃n, ι̃n) = (k , x , i). We will use the notation µk,x,i

n to denote such a
realisation.
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Reward Functional and Value Function

We want to maximise a reward functional of the form

E

[
N∑

n=0

f (n,Xn, ι̃n)−
∑
τn

cobs

]
(5)

which is equivalent to

E

[
N∑

n=0

µn(f (n, ·, ι̃n))−
∑
τn

cobs

]
(6)

By treating µ as the new state process, we have a fully observable control
problem.
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Reward Functional and Value Function

Reward Functional (finite horizon):

J
(
m;µk,x,i

m ;α
)

:= E

 N∑
n=m

µn(f (n, ·, ι̃n))−
∑
τn≥m

cobs

 , (7)

v
(
m;µk,x,i

m

)
:= sup

α∈A
J
(
m;µk,x,i

m ;α
)
. (8)

Dynamic Programming:

v(m, µk,x,i
m ) = sup

a∈A

{
E
[
f (m,Xm, ι̃m)− 1{τ̃m+1=m}cobs

+ v(m + 1, µm+1)
∣∣ µm = µk,x,i

m

]}
. (9)
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Dynamic Programming

Expanding upon (9), and writing (k , x , i) in place of µk,x,i
m :

v
(
m; (k , x , i)

)
= sup
α∈A

{∑
y∈S

p(m−k)
xy (i)

[
f (m, y , ι̃m)− 1{τ̃m+1=m}cobs

+ v
(
m + 1; (τ̃m+1, X̃m+1, ι̃m)

) ] }
. (10)

Using finite difference notation, we can write more compactly:

min

{
vm,k
i,x − vm+1,k

i,x −
(
P

(m−k)
i fi

)
x
,

vm,k
i,x − sup

j∈I

[(
P

(m−k)
i

(
vm+1,m
j + f mj

))
x
− cobs

]}
= 0. (11)
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Dynamic Programming

Similarly, for the infinite horizon problem, we have

J
(
m;µx,i

m ;α
)

:= E

 ∞∑
n=m

γn−mµn(f (·, ι̃n))−
∑
τn≥m

γτn−mcobs

 , (12)

v
(
m;µx,i

m

)
:= sup

α∈A
J
(
m;µx,i

m ;α
)
, (13)

which satisfies the quasi-variational inequality (QVI):

min

{
vm
i,x − γvm+1

i,x −
(
Pm
i fi
)
x
,

vm
i,x − sup

j∈I

[(
Pm
i

(
γv1

j + fj
))

x
− cobs

]}
= 0. (14)
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Dynamic Programming

In practice, when solving for Equation (14), we have to truncate the
domain and impose boundary conditions.

After truncation, can be written more generally as

min {Fi (ui ), ui −Mu} = 0, u = (u1, . . . , ud) ∈ Rd×N×L, (15)

where M : Rd×N×L → RN×L is defined by

(Mu)nl = max
1≤j≤d

((
Anu1

j

)
l
− cij

)
, (16)

where A is a non-negative matrix with row sums at most 1, and
Fi : RN×L → RN×L satisfying the following property: for any u, v ∈ Rd×L×N

with un
i,l − vn

i,l = max(um
j,k − vm

j,k) ≥ 0, we have

Fi (ui )
n
l − Fi (vi )

n
l ≥ γ(un

i,l − vn
i,l). (17)
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Comparison Principle

A comparison principle provides uniqueness to the solution.

Proposition

Suppose cij > 0, and u = (ui )i∈I (resp. v = (vi )i∈I) satisfies

min {Fi (ui ), ui −Mu} ≤ 0 (resp. ≥ 0), i ∈ I; (18)

then u ≤ v.
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Approximation by Penalisation

QVI: min {Fi (ui ), ui −Mu} = 0. (19)

A standard approach to solve is policy iteration. However, no guarantees
that resulting matrices are invertible.

We follow the approach taken by Reisinger and Zhang [1].

Consider the penalised problem: find uρ = (uρi )i∈I ∈ Rd×N×L such that

Fi (u
ρ
i )nl − ρ

∑
j∈I

π
((

Anuρ,0j

)
l
− cij − uρ,ni,l

)
= 0 (20)

where ρ > 0 is the penalty parameter and π : R→ R is continuous,
non-decreasing with π|(−∞,0] = 0 and π|(0,∞) > 0.
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Approximation by Penalisation

Theorem

For any fixed cij ≥ 0, the solution to the penalised problem uρ converges
monotonically from below to a function u ∈ Rd×N×L as ρ→∞.
Moreover u solves the discrete QVI if cij > 0 for all i , j ∈ I.

To solve for the penalised equation, we can use semismooth Newton
methods. Let

Gρ[u] := Fi (ui )
n
l − ρ

∑
j∈I

π
((

Anu0
j

)
l
− cij − uni,l

)
, (21)

then given u(k), we obtain the next iterate by solving

Gρ[u(k)] + L(k+1)[u(k)](u(k+1) − u(k)) = 0, (22)

where L is a generalised derivative of Gρ.
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Numerical Experiment

We apply our framework by extending a HIV-treatment model that
appeared in Winklemann et al. [2].

Our model includes scenarios with large sub-optimal observation gaps.

3 regimes: Treatment 1, Treatment 2, no treatment

4 virus types: WT (Wild-type), R1, R2, HR (highly resistant)

State space: {0, l ,m, h}4 ∪ ∗

∗ represents eventual death (absorbing state in chain).
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Numerical Experiment

Source: Winkelmann et al. [2]
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Numerical Experiment

Cost function f̃ (x , i) = c1(x) + c2(i).

c1 captures productivity loss from illness, c2 represents cost of treatment.

Maximisation problem: take f = −f̃ .

Reward functional

J
(
m; (x , i);α

)
:= E

 ∞∑
n=m

γn−m f (X̃n, ι̃n)−
∑
τn≥m

γn−τncobs

 . (23)
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Numerical Experiment

ρ 103 2 × 103 4 × 103 8 × 103 16 × 103 32 × 103

N = 150, c = 200 (a) 10 10 10 10 10 10
(b) 47.09 23.56 11.79 5.89 2.95 1.47

N = 150, c = 400 (a) 13 13 13 13 13 13
(b) 47.17 23.60 11.81 5.90 2.95 1.48

N = 150, c = 800 (a) 17 17 17 17 17 17
(b) 47.34 23.69 11.85 5.93 2.96 1.48

N = 300, c = 400 (a) 13 13 13 13 13 13
(b) 81.29 40.68 20.35 10.17 5.09 2.54

N = 600, c = 400 (a) 13 13 13 13 13 13
(b) 136.00 68.05 34.04 17.02 8.51 4.26

Figure 2: (a) Number of Newton iterations; (b) ‖vρ − v 2ρ‖.

First-order convergence with respect to penalty parameter.

Number of Newton iterations remain constant across the size of ρ.
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Numerical Experiment
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Numerical Experiment
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Further work: Bayesian parameter estimation

If transition matrix P depends on unknown parameters θ, can establish
DPP involving the ‘prior’ and ‘posterior’ distributions.

v
(
m; (k, x , i); ρ

)
= sup
α∈A

{∑
y∈S

pρ,(m−k)
xy (i)

[
f (m, y , ι̃m)− 1{τ̃m+1=m}cobs

+ v
(
m + 1; (τ̃m+1, X̃m+1, ι̃m); ρ′

)]}
, (24)

pρ,(m−k)
xy (i) =

∫
Θ

p
(m−k)
xy |θ (i) ρ(dθ), (25)

ρ′(dθ) =

{
ρ(dθ), τ̃m+1 = k;

ρ(dθ) · p(m−k)
xy |θ (i)/p

ρ,(m−k)
xy (i), τ̃m+1 = m.

(26)
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Further work: Continuous-time formulation

If X is a diffusion (e.g. solution to an SDE), we expect the corresponding
value function to be a solution of

min
{
− ∂svi (s, x) + γvi (s, x)− Ei [fi (X

x
s )] ,

vi (s, x)−max
j∈I

(
Ei [vj(0,X x

s )]− cobs

)}
= 0. (27)

The general framework is similar, but technicalities with viscosity
solutions have to be dealt with.
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