# Controlled Markov chains with observation costs

JONATHAN TAM Supervisor: Prof. Christoph Reisinger

Mathematical Institute University of Oxford

Graduate School: Mathematics of Random Systems September 2021

#### Oxford Mathematics

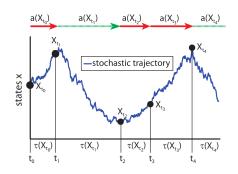


Mathematical Institute

∕□ ▶ `◀

- Stochastic control often assumes that a continuous flow of data is available.
- But sometimes it is expensive to obtain data (e.g. medical records of patients).
- Need to optimise timing of measurements, and make decisions based on limited data.
- We would like a version of stochastic control where the state can only be known if a cost is paid.

# Motivation



Source: Winkelmann et al. [2]

Figure 1: Schematic realisation of the control framework.

Our information flow should only consist of our past observations.

Oxford Mathematics

- Let  $(\Omega, \mathcal{F}, \mathbb{P})$  be a probability space.
- Let  $X = (X_n)_{n \in \mathbb{N}}$  be a Markov chain with state space S.
- Consider a finite control set  $\mathcal{I} \coloneqq \{1, \dots, d\}$ .
- The transition matrix depends on the control:  $P = P_i$ .
- Assume the distribution of X is known *a priori*, but the realisation of each X<sub>n</sub> comes with an upfront cost c<sub>obs</sub>.

Let  $\tau = \{\tau_k\}_{k=0}^{\infty}$  be a sequence of strictly increasing random times. Define for all  $t \ge 0$ ,

$$\mathcal{F}_n^{(X,\tau)} := \sigma\left\{(\tau_0, X_{\tau_0}), (\tau_1, X_{\tau_1}), \ldots, (\tau_k, X_{\tau_k}) : k = \sup\{j : \tau_j < n\}\right\}.$$

Now we require that  $\tau_k$  are predictable stopping times (with respect to  $\mathcal{F}^{(X,\tau)}$ ).

Reason? We want  $\tau_k$  to be  $\mathcal{F}_{\tau_{k-1}}^{(X,\tau)}$ -measurable.

i.e. at  $\tau_{k-1}$ , we have our 'decision rule' for the next observation time  $\tau_k$ .

# $\mathcal{F}^{(X,\tau)}$ is our observation filtration, and $\tau$ is our observation sequence.

For each  $\tau_k \in \tau$  we associate a random variable  $\iota_k$ , which is  $\mathcal{I}$ -valued and  $\mathcal{F}_{\tau_k}^{(X,\tau)}$ -measurable. This represents the switching locations.

The double sequences  $\alpha = (\tau_k, \iota_k)_{k \ge 1}$  form the set of admissible controls (denoted by  $\mathcal{A}$ ) in our observation control problem.

For any time *n*, define

$$\tilde{\tau}_n = \max\{\tau_k \in \tau : \tau_k < n\}, \ \tilde{\iota}_n = \iota_{\tilde{\tau}_n} \tag{1}$$

so the pair  $(\tilde{\tau}_n, \tilde{\iota}_n)$  is the most recent observation and switching location.

Define the observations process  $\tilde{X}$  by

$$\tilde{X}_n = X_{\tilde{\tau}_n}.$$
(2)

Note that  $\mathcal{F}^{\tilde{X}} = \mathcal{F}^{(X,\tau)}$ . The Markov property of X gives the relation

$$\mathbb{E}[f(X_n)|\mathcal{F}_n^{\tilde{X}}] = \mathbb{E}[f(X_n)|\tilde{X}_n]$$
(3)

Oxford Mathematics Jonathan Tam Grad School: Random Systems September 2021 7 < ロ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > 〈 □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > ⟨ □ > Consider the measure-valued process  $\mu$  defined by

$$\mu_n(dx) = \mathbb{P}(X_n \in dx | \mathcal{F}_n^{\tilde{X}}) (= \mathbb{P}(X_n \in dx | \tilde{X}_n)).$$
(4)

which is the conditional distribution of  $X_n$  given its past observation history.

In fact each realisation of  $\mu_n$  can be characterised by the values of  $(\tilde{\tau}_n, \tilde{X}_n, \tilde{\iota}_n) = (k, x, i)$ . We will use the notation  $\mu_n^{k,x,i}$  to denote such a realisation.

We want to maximise a reward functional of the form

$$\mathbb{E}\left[\sum_{n=0}^{N} f(n, X_n, \tilde{\iota}_n) - \sum_{\tau_n} c_{\text{obs}}\right]$$
(5)

which is equivalent to

$$\mathbb{E}\left[\sum_{n=0}^{N}\mu_{n}(f(n,\cdot,\tilde{\iota}_{n}))-\sum_{\tau_{n}}c_{\text{obs}}\right]$$
(6)

By treating  $\mu$  as the new state process, we have a fully observable control problem.

Reward Functional (finite horizon):

$$J(m; \mu_m^{k,x,i}; \alpha) := \mathbb{E}\left[\sum_{n=m}^N \mu_n(f(n, \cdot, \tilde{\iota}_n)) - \sum_{\tau_n \ge m} c_{\text{obs}}\right],$$
(7)  
$$v(m; \mu_m^{k,x,i}) := \sup_{\alpha \in \mathcal{A}} J(m; \mu_m^{k,x,i}; \alpha).$$
(8)

Dynamic Programming:

Oxford Mathematics

$$v(m, \mu_m^{k, x, i}) = \sup_{a \in \mathcal{A}} \Big\{ \mathbb{E} \big[ f(m, X_m, \tilde{\iota}_m) - \mathbb{1}_{\{\tilde{\tau}_{m+1} = m\}} c_{\text{obs}} + v(m+1, \mu_{m+1}) \big| \ \mu_m = \mu_m^{k, x, i} \big] \Big\}.$$
(9)

Jonathan Tam Grad School: Random Systems September 2021 10

# Dynamic Programming

Expanding upon (9), and writing (k, x, i) in place of  $\mu_m^{k,x,i}$ :

$$v(m;(k,x,i)) = \sup_{\alpha \in \mathcal{A}} \left\{ \sum_{y \in \mathcal{S}} p_{xy}^{(m-k)}(i) \left[ f(m,y,\tilde{\iota}_m) - \mathbb{1}_{\{\tilde{\tau}_{m+1}=m\}} c_{\text{obs}} + v(m+1;(\tilde{\tau}_{m+1},\tilde{X}_{m+1},\tilde{\iota}_m)) \right] \right\}.$$
 (10)

Using finite difference notation, we can write more compactly:

$$\min\left\{ v_{i,x}^{m,k} - v_{i,x}^{m+1,k} - \left( P_i^{(m-k)} f_i \right)_x, \\ v_{i,x}^{m,k} - \sup_{j \in \mathcal{I}} \left[ \left( P_i^{(m-k)} \left( v_j^{m+1,m} + f_j^m \right) \right)_x - c_{\text{obs}} \right] \right\} = 0.$$
(11)

Oxford Mathematics

# Dynamic Programming

Similarly, for the infinite horizon problem, we have

$$J(m; \mu_m^{\mathbf{x}, i}; \alpha) \coloneqq \mathbb{E}\left[\sum_{n=m}^{\infty} \gamma^{n-m} \mu_n(f(\cdot, \tilde{\iota}_n)) - \sum_{\tau_n \ge m} \gamma^{\tau_n - m} c_{\text{obs}}\right], \quad (12)$$
$$v(m; \mu_m^{\mathbf{x}, i}) \coloneqq \sup_{\alpha \in \mathcal{A}} J(m; \mu_m^{\mathbf{x}, i}; \alpha), \quad (13)$$

which satisfies the quasi-variational inequality (QVI):

$$\min\left\{ v_{i,x}^{m} - \gamma v_{i,x}^{m+1} - \left(P_{i}^{m}f_{i}\right)_{x}, \\ v_{i,x}^{m} - \sup_{j \in \mathcal{I}} \left[ \left(P_{i}^{m}(\gamma v_{j}^{1} + f_{j})\right)_{x} - c_{\text{obs}} \right] \right\} = 0.$$
(14)

Oxford Mathematics

Grad School: Random Systems

ヘロト 人間 とくほとくほとう

12 ∋ ∽ ९ ୯

# Dynamic Programming

In practice, when solving for Equation (14), we have to truncate the domain and impose boundary conditions.

After truncation, can be written more generally as

$$\min \{F_i(u_i), u_i - \mathcal{M}u\} = 0, \quad u = (u_1, \dots, u_d) \in \mathbb{R}^{d \times N \times L}, \quad (15)$$

where  $\mathcal{M}: \mathbb{R}^{d \times N \times L} \to \mathbb{R}^{N \times L}$  is defined by

$$(\mathcal{M}u)_{I}^{n} = \max_{1 \leq j \leq d} \left( \left( A^{n} u_{j}^{1} \right)_{I} - c_{ij} \right),$$
(16)

where A is a non-negative matrix with row sums at most 1, and  $F_i : \mathbb{R}^{N \times L} \to \mathbb{R}^{N \times L}$  satisfying the following property: for any  $u, v \in \mathbb{R}^{d \times L \times N}$  with  $u_{i,l}^n - v_{i,l}^n = \max(u_{j,k}^m - v_{j,k}^m) \ge 0$ , we have

$$F_{i}(u_{i})_{l}^{n}-F_{i}(v_{i})_{l}^{n}\geq\gamma(u_{i,l}^{n}-v_{i,l}^{n}).$$
(17)

 
 Oxford Mathematics
 Jonathan Tam
 Grad School: Random Systems
 September 2021
 13

 Image: September 2021
 Image: September A comparison principle provides uniqueness to the solution.

# Proposition

Suppose 
$$c_{ij} > 0$$
, and  $u = (u_i)_{i \in \mathcal{I}}$  (resp.  $v = (v_i)_{i \in \mathcal{I}}$ ) satisfies  

$$\min \{F_i(u_i), u_i - \mathcal{M}u\} \le 0 \quad (resp. \ge 0), \quad i \in \mathcal{I};$$
(18)

then  $u \leq v$ .

Oxford

QVI: min {
$$F_i(u_i), u_i - \mathcal{M}u$$
} = 0. (19)

A standard approach to solve is policy iteration. However, no guarantees that resulting matrices are invertible.

We follow the approach taken by Reisinger and Zhang [1].

Consider the penalised problem: find  $u^{\rho} = (u^{\rho}_i)_{i \in \mathcal{I}} \in \mathbb{R}^{d \times N \times L}$  such that

$$F_{i}(u_{i}^{\rho})_{l}^{n} - \rho \sum_{j \in \mathcal{I}} \pi \left( \left( A^{n} u_{j}^{\rho,0} \right)_{l} - c_{ij} - u_{i,l}^{\rho,n} \right) = 0$$
(20)

where  $\rho > 0$  is the penalty parameter and  $\pi : \mathbb{R} \to \mathbb{R}$  is continuous, non-decreasing with  $\pi|_{(-\infty,0]} = 0$  and  $\pi|_{(0,\infty)} > 0$ .

#### Theorem

For any fixed  $c_{ij} \ge 0$ , the solution to the penalised problem  $u^{\rho}$  converges monotonically from below to a function  $u \in \mathbb{R}^{d \times N \times L}$  as  $\rho \to \infty$ . Moreover u solves the discrete QVI if  $c_{ij} > 0$  for all  $i, j \in \mathcal{I}$ .

To solve for the penalised equation, we can use semismooth Newton methods. Let

$$G^{\rho}[u] \coloneqq F_{i}(u_{i})_{I}^{n} - \rho \sum_{j \in \mathcal{I}} \pi \left( \left( A^{n} u_{j}^{0} \right)_{I} - c_{ij} - u_{i,I}^{n} \right),$$

$$(21)$$

then given  $u^{(k)}$ , we obtain the next iterate by solving

$$G^{\rho}[u^{(k)}] + \mathcal{L}^{(k+1)}[u^{(k)}](u^{(k+1)} - u^{(k)}) = 0, \qquad (22)$$

where  $\mathcal{L}$  is a generalised derivative of  $G^{\rho}$ .

Jonathan Tam

Oxford Mathematics We apply our framework by extending a HIV-treatment model that appeared in Winklemann et al. [2].

Our model includes scenarios with large sub-optimal observation gaps.

3 regimes: Treatment 1, Treatment 2, no treatment

4 virus types: WT (Wild-type), R1, R2, HR (highly resistant)

State space:  $\{0, I, m, h\}^4 \cup *$ 

\* represents eventual death (absorbing state in chain).

# Numerical Experiment

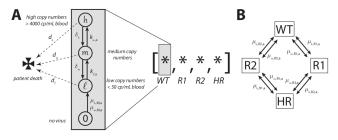


FIG. 3.1. Simplified HIV Model A: Transitions between copy number states  $n_C$ . B: Transitions in between viral strains M.

Source: Winkelmann et al. [2]



Cost function  $\tilde{f}(x,i) = c_1(x) + c_2(i)$ .

 $c_1$  captures productivity loss from illness,  $c_2$  represents cost of treatment. Maximisation problem: take  $f=-\tilde{f}.$ 

Reward functional

$$J(m;(x,i);\alpha) := \mathbb{E}\left[\sum_{n=m}^{\infty} \gamma^{n-m} f(\tilde{X}_n, \tilde{\iota}_n) - \sum_{\tau_n \ge m} \gamma^{n-\tau_n} c_{\text{obs}}\right].$$
(23)

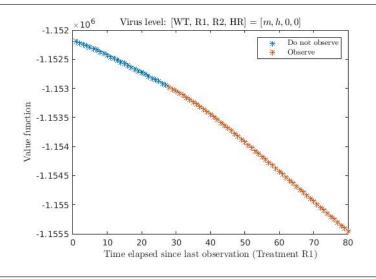
|                  | ρ   | 10 <sup>3</sup> | $2 \times 10^{3}$ | $4 \times 10^{3}$ | $8 \times 10^{3}$ | $16 \times 10^{3}$ | $32 \times 10^{3}$ |
|------------------|-----|-----------------|-------------------|-------------------|-------------------|--------------------|--------------------|
| N = 150, c = 200 | (a) | 10              | 10                | 10                | 10                | 10                 | 10                 |
|                  | (b) | 47.09           | 23.56             | 11.79             | 5.89              | 2.95               | 1.47               |
| N = 150, c = 400 | (a) | 13              | 13                | 13                | 13                | 13                 | 13                 |
|                  | (b) | 47.17           | 23.60             | 11.81             | 5.90              | 2.95               | 1.48               |
| N = 150, c = 800 | (a) | 17              | 17                | 17                | 17                | 17                 | 17                 |
|                  | (b) | 47.34           | 23.69             | 11.85             | 5.93              | 2.96               | 1.48               |
| N = 300, c = 400 | (a) | 13              | 13                | 13                | 13                | 13                 | 13                 |
|                  | (b) | 81.29           | 40.68             | 20.35             | 10.17             | 5.09               | 2.54               |
| N = 600, c = 400 | (a) | 13              | 13                | 13                | 13                | 13                 | 13                 |
|                  | (b) | 136.00          | 68.05             | 34.04             | 17.02             | 8.51               | 4.26               |

Figure 2: (a) Number of Newton iterations; (b)  $||v^{\rho} - v^{2\rho}||$ .

First-order convergence with respect to penalty parameter.

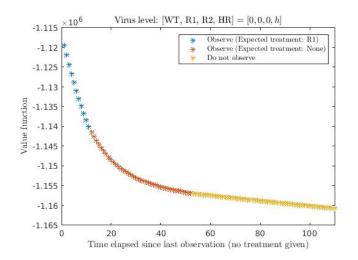
Number of Newton iterations remain constant across the size of  $\rho$ .

# Numerical Experiment



Oxford Mathematics

# Numerical Experiment



Oxford Mathematics

э

000

#### Further work: Bayesian parameter estimation

Jonathan Tam

If transition matrix P depends on unknown parameters  $\theta$ , can establish DPP involving the 'prior' and 'posterior' distributions.

$$v(m; (k, x, i); \rho) = \sup_{\alpha \in \mathcal{A}} \left\{ \sum_{y \in \mathcal{S}} p_{xy}^{\rho, (m-k)}(i) \left[ f(m, y, \tilde{\iota}_m) - \mathbb{1}_{\{\tilde{\tau}_{m+1}=m\}} c_{\text{obs}} + v(m+1; (\tilde{\tau}_{m+1}, \tilde{X}_{m+1}, \tilde{\iota}_m); \rho') \right] \right\},$$
(24)

$$p_{xy}^{\rho,(m-k)}(i) = \int_{\Theta} p_{xy|\theta}^{(m-k)}(i) \ \rho(d\theta), \qquad (25)$$

$$\rho'(d\theta) = \begin{cases} \rho(d\theta), & \tilde{\tau}_{m+1} = k; \\ \rho(d\theta) \cdot p_{xy|\theta}^{(m-k)}(i) / p_{xy}^{\rho,(m-k)}(i), & \tilde{\tau}_{m+1} = m. \end{cases}$$

Oxford Mathematics

23

= ∽<</p>

If X is a diffusion (e.g. solution to an SDE), we expect the corresponding value function to be a solution of

$$\min\left\{-\partial_{s}v_{i}(s,x)+\gamma v_{i}(s,x)-\mathbb{E}_{i}\left[f_{i}(X_{s}^{x})\right],\\v_{i}(s,x)-\max_{j\in\mathcal{I}}\left(\mathbb{E}_{i}[v_{j}(0,X_{s}^{x})]-c_{\mathrm{obs}}\right)\right\}=0.$$
(27)

The general framework is similar, but technicalities with viscosity solutions have to be dealt with.

#### References

Oxford

Mathematics

# C. Reisinger and Y. Zhang.

A penalty scheme for monotone systems with interconnected obstacles: Convergence and error estimates. *SIAM J. Numer. Anal.*, 57(4):1625–1648, 2019.

S. Winkelmann, C. Schütte, and M. v. Kleist. Markov control processes with rare state observation: Theory and application to treatment scheduling in HIV–1. *Commun. Math. Sci.*, 12(5):859–877, 2014.