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Introduction

Langevin dynamics

Linear Langevin equation: a particle (of unit mass) moving in a viscous
medium under a τ-periodic force, its velocity Y obeys

ÛY = −Y + Lτ(t), (1)

Lτ : a stochastic process (Gaussian white noise) or a deterministic chaotic
map T [Beck1990]

Lτ(t) =
√
τ

∞∑
n=1

xnδ(t − nτ), xn+1 = T (xn). (2)

Integrating (1)-(2) via Y (t) = e−(t−nτ)yn gives a discrete Langevin dynamical
system

xn+1 = T (xn),

yn+1 = e−τyn +
√
τxn+1.
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Langevin dynamics: example

[Beck1990] T as a simple chaotic map: binary shift (with subtracted mean)

xn+1 = 2xn mod 1,

yn+1 = λyn +
√
τ(xn+1 −

1
2
).

In the limit τ → 0, the y-variable generates a classical Langevin process, and
the invariant density of y becomes Gaussian as λ(= e−τ) → 1.
It holds for any strongly mixing map T .

In this talk, we consider T as a random map: the Pelikan map.
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The Pelikan map
Consider

xn+1 = T (xn) =

{
T1(xn) = axn mod 1, with probability p ∈ [0, 1]
T2(xn) = bxn, with probability 1 − p

where a > 1 (expansion rate) and 0 < b < 1 (contraction rate).
I p = 1, 0: deterministic and (piecewise-)linear, well-understood;
I p ∈ (0, 1): random, dynamical transition from uniformly chaotic (p = 1)

to global contracting (p = 0).

[Pelikan1984] The Pelikan map: a = 1
b = 2

T (x) =

{
T1(x) = 2x mod 1, prob. p ∈ [0, 1]
T2(x) = 1

2 x, prob. 1 − p
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Invariant Densities

Invariant densities of the Pelikan map
It has been shown [Pelikan1984]

For 1
2 < p 6 1, the Pelikan map T has a unique

absolutely continuous invariant measure (acim)
whose support is all of [0, 1], and the invariant
density ρ is piecewise constant.

Numerical simulations:
10, 000 initial x0 ∈ Uni(0, 1), 10, 100 time steps each; first 100 iterations are discarded to eliminate transient.

From left to right: p = 1, 0.9, 0.8, 0.7, 0.6, and 0.501

- time-average probability distributions (= ensemble average, due to ergodicity):

- arbitrary trajectories (only show the last 1, 000 iterations):
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Invariant densities: proof
I The Perron-Frobenius operator (LT ) for T : LT ρ(x) =

∑
y∈T−1(x)

ρ(y)
|T ′(y) |

LT ρ(x) = [pLT1 ρ + (1 − p)LT2 ρ](x)

=
p
2

[
ρ
( x
2

)
+ ρ

(
x + 1

2

)]
+ 2(1 − p)ρ(2x) · χ[0, 1

2 ]
(x)

I invariant density ρ as a fixed point: LT (ρ) = ρ

ρ
( x
2

)
=

2
p
ρ(x) −

4(1 − p)
p

χ[0, 1
2 ]
(x)ρ(2x) − ρ

(
x + 1

2

)
(3)

I assuming ρ =const. > 0 on each
[ 1

2n+1 ,
1
2n

]
, n = 0, 1, ..., define

rn :=

∫ 1
2n

1
2n+1

ρ(x)dx,

an := ρ|( 1
2n+1 ,

1
2n )

and an = 2n+1rn.
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Invariant densities: proof (cont’d)

I integrating eqn.(3) and change of variables yields recurrence relations:

rn+1

rn
=

1 −
(

2(1−p)
p

)n+2

2 − 2
(

2(1−p)
p

)n+1 ,
an+1

an
= 2

rn+1

rn
. (4)

I Three cases for p ∈ ( 12, 1):

(1) when 2
3 < p < 1, rn+1

rn →
1
2 < 1 and an+1

an
→ 1 (as n→∞)

⇒ ρ is bounded, approaches constant 1 as p→ 1;

(2) when 1
2 < p < 2

3 ,
rn+1
rn →

1−p
p ∈ (

1
2, 1) and

an+1
an
→

2(1−p)
p > 1

⇒ ρ is normalisable but unbounded;

(3) when p→ 1
2 ,

rn+1
rn → 1 and an+1

an
→ 2

⇒ ρ is non-normalisable and unbounded.
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Invariant density curves

Further to the existence and uniqueness of ρ, we
want to determine the shape of ρ for all p ∈ ( 12, 1),
via midpoint interpolation [JY2019]:

I ρ is normalisable for all p ∈ ( 12, 1): 1 =
∑∞

i=0 ri ⇒ a0 =
2p−1

p ,

I by recurrence relation (4) ⇒ an =
2p−1
3p−2

[
1 −

(
2q
p

)n+1
]
, n = 0, 1, ...

I midpoints coordinates: (xn, yn) =
(

3
2n+2 , an

)
, n = 0, 1, ...

I by taking limn→∞(xn, yn) ⇒ ρp(x) = A(1 − Bx−1+C)

where A(p) :=
2p − 1
3p − 2

, B(p) :=
(

2(1 − p)
p

) ln 3
ln 2−1

, C(p) :=
1
ln 2

ln
p

1 − p
,

and p ∈ (
1
2
, 1).
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Invariant density curves (cont’d)

Plots with midpoints: ρp(x) = A(p) ·
(
1 − B(p) · x−1+C(p)

)
, p ∈ ( 12, 1)

A(p) = 2p−1
3p−2 , B(p) =

(
2(1−p)

p

) ln 3
ln 2−1

, and C(p) = 1
ln 2 ln

p
1−p .

I as p→ 1, ρp(x) → 1;
I as p→ 1

2 , C(p) → 0 and ρp(x) ∼ 1
x ;

I at p = 4
5 , ρp(x) = 3

2 − x, a straight line.
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Invariant Densities

Lyapunov exponents
Three types of averages in random systems: (ω as a noise)

time-averaged Lyapunov exponent: λt(ω) := lim
n→∞

1
n

n−1∑
i=0

ln |T ′(xi(ω))|

ensemble-averaged Lyap. exponent: λe(ω) :=

∫
ρ(x) ln |T ′(x(ω))|dx

noise-averaged Lyap. exponents: λω,t :=
∫

λt(ω)dµ(ω)

λω,e :=

∫
λe(ω)dµ(ω)

For the Pelikan map,

λt(ω) = limn→∞(
n1
n ln 2 + n2

n ln 1
2 ) = p ln 2 + (1 − p) ln 1

2 = (2p − 1) ln 2,

λe(ω) is a random variable ∼ pδ(ln 2) + (1 − p)δ(ln 1
2 ), p , 1

2 .

⇒ λω,t = λω,e = (2p − 1) ln 2 when p , 1
2 .

At p = 1
2 , λt = 0 (with unbounded, non-normalisable density, exhibiting

non-stationary intermittency).
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Auto-correlation functions

The auto-correlation function of time difference k ∈ N of a map T :

〈xkx0〉 :=

∫
ρ(x0)T k(x0)x0dx0,

provided x0 is distributed according to the invariant density ρ of the map T .

For the Pelikan map T with p ∈ ( 12, 1), k = 1,

〈x1x0〉 =

∫ 1

0
ρp(x)[pT1(x) + (1 − p)T2(x)]xdx =

(2p − 1)(3p + 25)
24(5p − 1)

.

In addition, we have

〈x〉 =
∫ 1

0 ρp(x)xdx = 2p−1
3p−1 ,

〈x2〉 =
∫ 1

0 ρp(x)x2dx = 4(2p−1)
3(5p−1) .
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Normalised auto-correlation functions: simulations
To compare across different values of p ∈ ( 12, 1), define the normalised
auto-correlation function CF(p, k) as

CF(p, k) :=
〈xkx0〉 − 〈x〉2

〈x2〉 − 〈x〉2
.

Numerical setups: 105 initial conditions chosen directly from the invariant density formula (with 20

subintervals of the unit partition); 25 values of p ∈ (0.5, 1) with more values closer to 0.5; time k up to 9.

[Majumdar2021]
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Auto-correlation functions: semi-Markovian approximation
Iterates of the Pelikan map T :

x1 =

{
T1(x0) = 2x0 mod 1, prob. p
T2(x0) =

1
2 x0, prob. 1 − p

x2 =



T1(T1(x0)) = 4x0 mod 1, prob. p2

T2(T1(x0)) =
1
2 (2x0 mod 1) =

{
x0, x0 ∈

[
0, 1

2
)
, prob. p(1−p)

2
x0 −

1
2, x0 ∈

[ 1
2, 1

]
, prob. p(1−p)

2
T1(T2(x0)) =x0, prob. (1 − p)p
T2(T2(x0)) =

1
4 x0, prob. (1 − p)2

Non-commutativity of the two sampling maps:

(T2T1 − T1T2)(x) =

{
0, if x ∈ [0, 1

2 )

− 1
2, if x ∈ [ 12, 1]
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Auto-correlation functions: semi-Markovian (cont’d)

Instead, we consider

x2 =


T1(T1(x0)) = 4x0 mod 1, prob. p2

Ti(Tj(x0)) = x0, i , j, prob. 2p(1 − p)
T2(T2(x0)) =

1
4 x0, prob. (1 − p)2

Iterates of this approximated (and Markovian) map have a simple binomial
structure, e.g., when k is even,

xk =



2kx0 mod 1, prob. pk

2k−2x0 mod 1, prob.
(k
1
)
pk−1(1 − p)

...
...

x0, prob.
( k
k/2

)
pk/2(1 − p)k/2

...
...

1
2k−2 x0, prob.

( k
k−1

)
p(1 − p)k−1

1
2k x0, prob. (1 − p)k
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Auto-correlation functions: semi-Markovian (cont’d 2)

⇒∗

p→ 1: 〈xkx0〉 decays exponentially; p→ 1
2 : power-law decay

At p = 1, binary shift: 〈xkx0 〉 ∼ 0.5k , slope in the

semi-log plot γ = − ln 2 ≈ −0.69.
16
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What’s next

I [Klages2013, Sato2019] to determine diffusion type of y-variable in the
discrete Langevin equation: (x̃n := xn − 〈x〉)

yn+1 = yn + x̃n, xn+1 = T (xn), T the Pelikan map,

mean square displacement (MSD) 〈y2
n 〉 = D · n, where the diffusion

coefficient

D(p) = 〈x̃2〉 + 2
∞∑

k=1
〈x̃k x̃0〉

I numerical difficulties due to
i) binary expansion (large memory needed),
ii) long transient as p approaches 1

2 (non-stationarity),
iii) order of taking multiple limits: ensemble size N →∞, time k →∞
and p→ 1

2
I what can we say about diffusion type generated by such Langevin

dynamics?
I ...
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Summary

I the Pelikan map:
intermittent dynamical behaviour, (infinite) invariant densities,
Lyapunov exponents;

I discrete Langevin system generated by iterates of the Pelikan map:
auto-correlation functions (simulations and a semi-Markovian
approach): transition from exponential decay (p→ 1) to a power-law
decay (p→ 1

2 );

I towards anomalous diffusion (nonlinear dependence of MSD in time)
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Thank you very much!
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