Transition to Anomalous Dynamics
in Random Systems

Jin Yan"
in collaboration with R. Klages, Y. Sato, S. Ruffo, M. Majumdar and C. Beck

*j.yan@qmul.ac.uk
School of Mathematical Sciences,
Queen Mary University of London, UK

Graduate School on Mathematics of Random Systems: Analysis, Modelling and Algorithms
VAST - Imperial - Oxford, 6-10 Sept. 2021, online



Introduction

Invariant Densities

Auto-correlation Functions
Outlook and Summary

References

«O0)>» «F»r «

A



Transition to Anomalous Dynamics in Random Systems
[ Introduction

Langevin dynamics

Linear Langevin equation: a particle (of unit mass) moving in a viscous
medium under a 7-periodic force, its velocity Y obeys

Y ==Y + L (t), (D

L,: a stochastic process (Gaussian white noise) or a deterministic chaotic
map T [Beck1990]

Let) = VT ) xad(t =n7), Xnet = T(x): &)
n=1

Integrating (1)-(2) via Y(t) = e ")y, gives a discrete Langevin dynamical
system

Xn+1 = T(Xp),

Vet =€ Yo+ VTXnyq.
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Langevin dynamics: example

[Beck1990] T as a simple chaotic map: binary shift (with subtracted mean)
Xp+1 = 2X, mod 1,

1
Yn+1 = AYn + ‘/;(Xnﬂ - 5)

In the limit 7 — 0, the y-variable generates a classical Langevin process, and
the invariant density of y becomes Gaussian as A(= e™7) — 1.
It holds for any strongly mixing map T.

In this talk, we consider T as a random map: the Pelikan map.
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The Pelikan map

Consider

T1(xn) = ax, mod 1,  with probability p € [0, 1]
Xne1 = T(Xp) = . -

To(xn) = bxp, with probability 1 —p
where a > 1 (expansion rate) and 0 < b < 1 (contraction rate).

» p =1, 0: deterministic and (piecewise-)linear, well-understood;
» p e (0,1): random, dynamical transition from uniformly chaotic (p = 1)
to global contracting (p = 0).

[Pelikan1984] The Pelikan map: a = 11) =2

Ti(x) =2xmod 1, prob. p € [0, 1]
T(x) = ;
Ta(x) = 3x, prob. 1 —p
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Invariant Densities

Invariant densities of the Pelikan map

It has been shown [Pelikan1984]

For 15 < p < 1, the Pelikan map T has a unique
absolutely continuous invariant measure (acim)
whose support is all of [0, 1], and the invariant

density p is piecewise constant. —

Numerical simulations:
10, 000 initial xo € Uni(0, 1), 10, 100 time steps each; first 100 iterations are discarded to eliminate transient.

From left to right: p = 1, 0.9, 0.8,0.7, 0.6, and 0.501

probability distributions (= ensemble average, due to ergodicity):

M"an A w‘nw‘u,.‘lw\l‘ M N I i u h f W

h l' “\ h h \j\ “
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[ Invariant Densities

Invariant densities: proof

> The Perron-Frobenius operator (Lr) for T: Lrp(x) = X, c1-1(x) %

Lrpx) =[pLr,p+ (1 -p)Lr,pl(x)

-5l ()

> invariant density p as a fixed point: L1(p) = p

+2(1 —p)p(2x) - X[o,%](x)

X 2 4(1 - p) 1
P (E) - ,—)p(x) T o Xjo,1(X)p(2x) = p (T) 3)
» assuming p =const. > 0 on each [2’7+1’ 2n] n=0,1, ... define
1
2[7
In = / . pO)ax,

on+1

an ‘= p|(

on+1? 2’7) SO w

and a, = 2™'r,
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Invariant Densities

Invariant densities: proof (contd)

> integrating eqn.(3) and change of variables yields recurrence relations:

1 (2(1_p))n+2

fner A\ P ) Ene1_ 2r”_+1 )
fn 2-2 (_2(1P—P))n+1 an r,,“

> Three cases for p € (%,1): L e/ |

(1)when§<p<1,r’;—;‘—>%<1andi’;—;‘—>1(asn—>00)

= p is bounded, approaches constant 1 as p — 1;

1 2 In+t 1;P 1 an+1 2(1-p)
(2) when 53 <p < 3%, Pl 6(2,1)and—an - =5 > 1

= p is normalisable but unbounded;

(3) whenp — 3, 21— qand 2 — 2
= p is non-normalisable and unbounded.
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Invariant density curves

Further to the existence and uniqueness of p, we
want to determine the shape of p for all p € (15, 1),
via midpoint interpolation [JY2019]: N

> pis normalisable for all p € (15, ):1=X2rn =a = %,

n+1]
. 2p—1 2
> by recurrence relation (4) = ap = SZ_—2 1- (Fq) ,n=0,1,...

» midpoints coordinates: (X,, ¥n) = (2,% a,,) , n=0,1,...

> by taking limpe(Xn, Yn) = | pp(x) = A(1 - Bx~1*C)

whereA(p) _ 22_2’ B(p) - (2(1p p))|n2 ’ C(p) _ # n 1’%,)’

andp € (E’ 1).
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Invariant Densities

Invariant density curves (contd)

Plots with midpoints:

po(X) = A(p) - (1= B(p) - x~+°¥))

In3

1
A(P)=§g—:;,B(P)=(2(1_p))‘2 ,and C(p) = 5 1Lp.

> asp — 1, pplx) — 1

> asp — 3, C(p) — 0and pp(x) ~ 1;

> atp = ‘51’ pp(X) =

g — X, a straight line.

pe(31)
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Lyapunov exponents

Three types of averages in random systems: (w as a noise)
n—1

time-averaged Lyapunov exponent: A;(w) := lim - E In |T'(x;(w))|
n—oo
i=0

ensemble-averaged Lyap. exponent: dg(w) := / () In | T (x(w))|dx
noise-averaged Lyap. exponents: A, := / A(w)d pu(w)

toe = [ @)
For the Pelikan map,
A(w) = limpse(Z 2+ Z2Ind)y=pln2+(1-p)ini =(@2p-1)In2
Ae(w) is a random variable ~ p&(In 2) + (1 — p)§(In %), p# %

= At = dwe = (2p—1)In2 whenp # %

Atp = 15, At = 0 (with unbounded, non-normalisable density, exhibiting
non-stationary intermittency).
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Auto-correlation Functions

Auto-correlation functions

The auto-correlation function of time difference k € N of amap T:

(o) = / p(6) T (x0) 000,

provided xg is distributed according to the invariant density p of the map T.

For the Pelikan map T with p € (15, 1), k=1,

(20 —1)(3p + 25)

1
<X1X0>:/0 pROIPTi (00 + (1 = PITax) o = == s

In addition, we have
1 2p—1
() = fy ol = 21,

1 4(2p-1
2y = Jy ppx)xPax = 3&52—1;'
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Auto-correlation Functions

Normalised auto-correlation functions: simulations
To compare across different values of p € (%, 1), define the normalised
auto-correlation function CF(p, k) as

(XXo) — (x)?
(x2y = (x)2

Numerical setups: 10° initial conditions chosen directly from the invariant density formula (with 20

CF(p, k) :=

subintervals of the unit partition); 25 values of p € (0.5, 1) with more values closer to 0.5; time k up to 9.

[Majumdar2021]

"~ Exponential decay
near p=1
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Auto-correlation Functions

Auto-correlation functions: semi-Markovian approximation

Iterates of the Pelikan map T:

N {T1 (x0) = 2xo mod 1, prob. p
1 =

Ta(x0) = $Xo, prob. 1 —p
T1(T+1(x0)) = 4xo mod 1, prob. p?
X » X e Oa l ’ I'Ob. M
T2(T1(x0)) :%(QXO mod 1) = 0 ; 0 [ 2)1 p p(12_p)
Xo = Xo =3 Xo € [E’ 1] s prob_ B
T1(T2(x0)) =xo, prob. (1 - p)p

T2(T2(xo)) = 1Xo, prob. (1 - p)

Non-commutativity of the two sampling maps:

0, ifxelo,3
(T2Th = T4 T2)(x) = 1 . [1 2)
—5 ifx € [5,1]
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Auto-correlation Functions

Auto-correlation functions: semi-Markovian (contd)

Instead, we consider
T1(T1(x0)) =4x, mod 1,  prob. p?
X2 = Ii(Tj(x0)) = X0, 1 #], prob. 2p(1 - p)
To(T2(x0)) = 3%o, prob. (1 - p)?

Iterates of this approximated (and Markovian) map have a simple binomial
structure, e.g., when k is even,

2%xo mod 1, prob. p*
22xymod 1, prob. (¥)o""'(1 - p)

Xk = 4 Xo, prob. (,/,)p"/2(1 — p)¥/2

2k1_—2X0’ Pr0b~ (k[—(1)p(1 _p)k71
X0, prob. (1 — p)¥
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Auto-correlation Functions

Auto-correlation functions: semi-Markovian (contd 2)

* (@iwo)(p)

=

K+1

1 W (1-p k 1-p
— 1opk (=P T T Sl )
3[}71{ ” ( p ) (kg y) 2PiCenenb—2D)

where 9 F (a1, a2; b; ) is the Gauss hypergeometric function,
ag=laa=-k+K+1,b=K+2,

and K :{

-1 if k = even

= o

+ if k = odd

_4a@p—1) (3p+1\" 2p—1 8 p+1\*
’3(51)—1)( p ) "2 {3<5p—1) {( ) e

et
1-p k 1-p
(%) (,\fﬂ)'?”“’-“%”*Tp)]

s | (52 O (157 (L) 1050

(Tp—3)p—1) sp+1\*  (1-p\F( ap \FT g - ap
22— 1)@Er-1)Er—1) [( 2 ) 7( 2 ) (m) (l\'+1)"”("‘ ""h'fl—p) :

*semi-Markovian
since the density is
assumed to be the
same as for the real
one.

p — 1: {xxxo) decays exponentially;

[P T———

Atp = 1, binary shift: (xxxo) ~ 0.5%, slope in the
semi-log ploty = —In2 ~ —0.69.

p — %: power-law decay

[ETp—— [EpT——)
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What’s next

> [Klages2013, Sato2019] to determine diffusion type of y-variable in the
discrete Langevin equation: (X, := x, — (x))

VYni1 =Yn+Xn,  Xne1 = T(Xn), T the Pelikan map,

mean square displacement (MSD) (y2) = D - n, where the diffusion
coeflicient

D(p) = (%) +2 )" (%iKo)
k=1

> numerical difficulties due to
i) binary expansion (large memory needed),
ii) long transient as p approaches % (non-stationarity),
iii) order of taking multiple limits: ensemble size N — oo, time k — oo
andp — }

> what can we say about diffusion type generated by such Langevin
dynamics?
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Summary

» the Pelikan map:
intermittent dynamical behaviour, (infinite) invariant densities,
Lyapunov exponents;

> discrete Langevin system generated by iterates of the Pelikan map:
auto-correlation functions (simulations and a semi-Markovian
approach): transition from exponential decay (p — 1) to a power-law
decay (p — %);

> towards anomalous diffusion (nonlinear dependence of MSD in time)
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Thank you very much!
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