Fluctuations in non-equilibrium and stochastic PDE

Benjamin Gess Universität Bielefeld † Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig

Graduate School "Mathematics of random systems: Analysis, modelling and algorithms", Imperial College London, September 2.021 joint work with Ben Fehrman [https://arxiv.org/abs/1910.11860]

Hax-Planck-Institut für Mathematik in den Naturwissenschafter

Universität Bielefeld

Content

Conservative SPDE as fluctuating continuum models

Two ways to the LDP, the skeleton equation

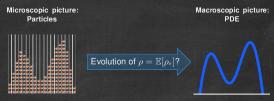
The zero range process (could also consider simple exclusion, independent particles).

- State space $\mathbb{M}_N := \mathbb{N}_0^{\mathbb{T}_N}$, i.e. configurations $\eta : \mathbb{T}_N \to \mathbb{N}_0$: System in state η if container k contains $\eta(k)$ particles.
- Local jump rate function $g:\mathbb{N}_0 o\mathbb{R}_0^+.$
- Translation invariant, asymmetric, zero mean transition probability

$$p(k, l) = p(k - l), \quad \sum_{k} k p(k) = 0.$$

- Markov jump process $\eta(t)$ on \mathbb{M}_N .
- $\eta(k, t) =$ number of particles in box k at time t.

- Hydrodynamic limit? Multi-scale dynamics



- Empirical density field: $\mu^N(x,t) := rac{1}{N} \sum_k \delta_{rac{k}{2t}}(x) \eta(k,tN^2).$
- [Hydrodynamic limit Ferrari, Presutti, Vares; 1987]

 $\mu^{N}(t) \rightharpoonup^{*} \bar{\rho}(t) dx$

with

$$\partial_t ar{
ho} = rac{1}{2} \partial_{xx} \Phi(ar{
ho})$$

with Φ the mean local jump rate $\Phi(\rho) = \mathbb{E}_{\nu_{\rho}}[g(\eta(0))].$

- Loss of information:
 - Error: $\mu^N = \bar{\rho} + o(1)$
 - ► Fluctuations, rare events?

Rate of convergence?

- Higher order expansion / fluctuation correction: Ansatz

$$\mu^{N} = \bar{\rho} + \frac{1}{N^{\frac{1}{2}}}Y^{1} + \frac{1}{N}Y^{2} + \dots$$

What are Y^i ?

 [Central limit fluctuations in non-equilibrium - Ferrari, Presutti, Vares; 1988]: Fluctuation density fields

$$egin{aligned} Y^{1,N}(x,t) &= N^{rac{1}{2}}(\mu^N(x,t) - \mathbb{E}\mu^N(x,t)) \ &pprox N^{rac{1}{2}}(\mu^N(x,t) - ar
ho) \end{aligned}$$

Then,

$$\mathcal{L}(Y^{1,N})
ightarrow^* \mathcal{L}(Y^1)$$
 for $N
ightarrow \infty$

with Y^1 the (Gaussian) solution to

 $dY^{1}(x,t) = \partial_{xx}(\Phi'(\bar{\rho}(x,t))Y^{1}(x,t)) dt + \partial_{x}(\Phi^{\frac{1}{2}}(\bar{\rho}(x,t))dW(t))$

with *dW* space-time white noise.

- Therefore,

$$\mu^{N} = \overbrace{\bar{\rho} + \frac{1}{N^{\frac{1}{2}}}Y^{1}}^{I} + o(\frac{1}{N^{\frac{1}{2}}}).$$

Rare events?

- [Large deviation principle, Kipnis, Olla, Varadhan; 1989 & Benois, Kipnis, Landim; 1995]: Let now ρ_0 constant. Then, informally,

$$\mathbb{P}[\mu^{N} \approx \rho \, dx] \approx \exp\{-N \, I_{0}(\rho \, dx)\},\$$

with rate function

$$M_0(
ho dx) = \inf \left\{ \int_0^T \int_{\mathbb{T}} |g|^2 dx ds : \ g \in L^2_{t,x}, \ \underbrace{\partial_t
ho = \partial_{xx} \Phi(
ho) + \partial_x(\Phi^{rac{1}{2}}(
ho)g)}_{ ext{"skeleton equation"}}
ight\}$$

- Note: This does **not** coincide with the rate function of the linearly corrected continuum model $\bar{\rho}^N$.

Question: Fluctuation correction implying higher order of approximation and correct rare events?

Ansatz: Langevin dynamics (nonlinear!)

$$\partial_t
ho^{\mathcal{N}} = \partial_{xx} \left(\Phi(
ho^{\mathcal{N}})
ight) + rac{1}{\mathcal{N}^rac{1}{2}} \partial_x \left(\Phi^rac{1}{2} (
ho^{\mathcal{N}}) d \mathcal{W}_t
ight).$$

Model case: Dean-Kawasaki, independent particles, $\Phi(\rho) = \rho$, i.e.

$$\partial_t \rho^N = \partial_{xx} \rho^N + \frac{1}{N^{\frac{1}{2}}} \partial_x \left((\rho^N)^{\frac{1}{2}} dW_t \right).$$

Informal justification:

- 1. Physics: Fluctuation-dissipation relation, "fluctuating hydrodynamics"
- Law of large numbers, Central limit fluctuations (improved order of approximation)
 & correct large deviations

Informally, correct rare events:

- Recall

$$\partial_t \rho^N = \partial_{xx} \left(\Phi(\rho^N) \right) + rac{1}{\sqrt{N}} \partial_x \left(\sqrt{\Phi(\rho^N)} dW_t
ight).$$

- Informally applying the contraction principle to the solution map

$$F: \frac{1}{\sqrt{N}}dW \mapsto
ho$$

yields as a rate function

$$I(
ho) = \inf\{I_{dW}(g) : F(g) =
ho\}.$$

- Schilder's theorem for Brownian sheet suggests

$$I_{dW}(g) = \int_0^T \int_{\mathbb{T}} |g|^2 \, dx dt.$$

- Get

$$I(\rho) = \inf \left\{ \int_0^T \int_{\mathbb{T}} |g|^2 \, dx dt : \, \partial_t \rho = \partial_{xx} \left(\Phi(\rho) \right) + \partial_x \left(\sqrt{\Phi(\rho)} g \right) \right\}.$$

- Obstacle

$$\partial_t
ho = \partial_{xx} \left(\Phi(
ho)
ight) + rac{1}{M^rac{1}{2}} \partial_x \left(\Phi^rac{1}{2}(
ho) dW_t
ight) \, .$$

- 1. not well-posed, supercritical $-> hb^2$ regularity structures
- Renormalization? Does renormalization appear in rate function? E.g. compare Φ⁴_{2/3} [Hairer, Weber; 2014].
- Decorrelation length of discrete system $=rac{1}{N}$.

$$\partial_t \rho^N = \partial_{xx} \left(\Phi(\rho^N) \right) + rac{1}{\sqrt{N}} \partial_x \left(\sqrt{\Phi(\rho^N)} dW_t^N \right)$$

where W^N has correlation length $\frac{1}{N}$.

- Ansatz: joint limit "small noise, ultraviolet cutoff"

$$\partial_t
ho^{N,K} = \partial_{xx} \left(\Phi(
ho^{N,K}) \right) + rac{1}{\sqrt{N}} \partial_x \left(\sqrt{\Phi(
ho^{N,K})} \circ d\mathcal{W}_t^K
ight)$$

where W^{K} has correlation length $\frac{1}{K}$.

– Gives the correct rate function for $\frac{1}{N} << \frac{1}{K}.$

Note: This is a particular case in which the link between *Macroscopic fluctuation theory* [Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim; 2015] and *fluctuating hydrodynamics* [Landau-Lifshitz 1973, Spohn 1991] can be made rigorous.

Two ways to the LDP, the skeleton equation

Conservative SPDE as fluctuating continuum models

Two ways to the LDP, the skeleton equation

- In the following concentrate on the case

 $\Phi(\rho) = \rho^m, \quad m \ge 1.$

- We consider stochastic PDE of the type

$$\partial_t \rho^{N,K} = \Delta\left((\rho^{N,K})^m\right) + \frac{1}{\sqrt{N}} \mathsf{div}\left((\rho^{N,K})^{\frac{m}{2}} \circ dW_t^K\right),\tag{*}$$

on $\mathbb{T}^d imes (0,\infty)$, where $W^K = \sum_{k=1}^K e_k \beta^k$.

 Pathwise well-posedness of (*): [Lions, Souganidis; 1998ff], [Lions, Perthame, Souganidis; 2013], [Lions, Perthame, Souganidis; 2014], [G., Souganidis; 2014], [G., Souganidis; 2015], [G., Fehrman; 2017], [Dareiotis, G.; 2019], [Fehrman, G.; 2021].

Two ways to the LDP:

1. F-convergence of the rate functional: $N \uparrow \infty$ yields LDP for (*) with rate function

$$I^{K}(
ho) = \inf \left\{ \int_{0}^{T} \int_{\mathbb{T}^{d}} |g|^{2} dx dt : \partial_{t}
ho = \partial_{xx}
ho^{m} + \partial_{x} \left(
ho^{rac{m}{2}} \mathcal{P}^{K} g
ight)
ight\}.$$

Then consider $K \uparrow \infty$.

2. Joint scaling: Weak convergence approach to LDP $(\frac{1}{N} \ll \frac{1}{K})$.

What do we need to show?E.g. F-convergence of the rate function

$$I^K(
ho) = \inf\left\{\int_0^T\int_{\mathbb{T}^d} |g|^2 \, dx dt: \, \partial_t
ho = \partial_{xx}
ho^m + \partial_x\left(
ho^{rac{m}{2}} P^K g
ight)
ight\}.$$

- Let $\rho^{\kappa} \to \rho$ need to show

 $I(\rho) \leq \liminf_{K} I^{K}(\rho^{K}).$

- Choose g^K such that

$$I^{K}(\rho^{K}) = \int_{0}^{T} \int_{\mathbb{T}^{d}} |g^{K}|^{2} dx dt \quad \text{and} \quad \partial_{t} \rho^{K} = \partial_{xx} \left(\rho^{K}\right)^{m} + \partial_{x} \left((\rho^{K})^{\frac{m}{2}} \underbrace{\mathcal{P}^{K} g^{K}}_{P}\right)$$

- Then $g^{K} \rightarrow g$ in $L^{2}_{t,x}$. Need to show $\rho^{K} \rightarrow \rho$ with

$$\partial_t \rho = \partial_{xx} \rho^m + \partial_x \left(\rho^{\frac{m}{2}} g \right).$$

- Both approaches crucially depend on understanding the skeleton PDE.
- The skeleton equation

$$\partial_t
ho = \Delta
ho^m + \operatorname{div} \left(
ho^{\frac{m}{2}} g(t, x)
ight)$$
 (*)
 $ho(0, x) =
ho_0(x),$

with $g \in L^2_{t,x}$?

- This leads to the key problem

Problem

- 1. Existence and uniqueness of solutions to (*).
- 2. Stability of solutions: Let $g^n \rightarrow g$ in $L^2_{t,x}$ with corresponding solutions ρ^n, ρ . Then

$$\rho^n \to \rho$$

in $L_t^{\infty} L_x^1$.

- Difficulty: Stable a-priori bound? L^p framework does not work.
- Do we expect non-concentration of mass / well-posedness?

Scaling and criticality of the skeleton equation

- We consider

$$\partial_t
ho = \Delta
ho^m + \operatorname{div}(
ho^{rac{m}{2}}g) \quad ext{on } \mathbb{R}_+ imes \mathbb{R}^d$$

with $g \in L^q(\mathbb{R}_{+,t}; L^p(\mathbb{R}^d_x; \mathbb{R}^d_x))$ and $\rho_0 \in L^r(\mathbb{R}^d_x)$.

- Via rescaling ("zooming in"):
 - \blacktriangleright p = q = 2 is critical.
 - \blacktriangleright r = 1 is critical, r > 1 is supercritical.

Apriori-bounds and energy space

- Consider

$$\partial_t
ho = \Delta
ho^m + \operatorname{div}(
ho^{rac{m}{2}}g) \quad ext{on } \mathbb{R}_+ imes \mathbb{T}^d$$

(*)

with $g \in L^2(\mathbb{R}_{+,t}; L^2(\mathbb{R}^d_x; \mathbb{R}^d_x)).$

- L^1 estimate only gives

$$\int_{\mathbb{T}^d}
ho(t,x) dx = \int_{\mathbb{T}^d}
ho_0(x) dx.$$

- Use entropy-entropy dissipation: Evolution of entropy given by $\int_{\mathbb{T}^d} \log(\rho) \rho.$ Informally gives

$$\int_{\mathbb{T}^d} \log(
ho)
ho \, dx ig|_0^t + \int_0^t \int_{\mathbb{T}^d} (
abla
ho^{rac{m}{2}})^2 \lesssim \int_0^t \int_{\mathbb{T}^d} g^2.$$

- Caution: Can only be true for non-negative solutions.

- Non-standard weak solutions, rewriting (*) as

$$\partial_t
ho = 2 {
m div}(
ho^{rac{m}{2}}
abla
ho^{rac{m}{2}}) + {
m div}(
ho^{rac{m}{2}} g) \quad {
m on} \ \mathbb{R}_+ imes \mathbb{T}^d$$

- Conclusion: Have to prove uniqueness within this class of solutions.

Ansatz for uniqueness: Show that every weak solution is a renormalized entropy solution (extending the concepts of DiPerna-Lions, Ambrosio to nonlinear PDE).

Let ρ be a weak solution to

$$\partial_t \rho = 2 \operatorname{div}(\rho^{\frac{m}{2}} \nabla \rho^{\frac{m}{2}}) + \operatorname{div}(\rho^{\frac{m}{2}}g) \quad \text{on } \mathbb{R}_+ imes \mathbb{T}^d.$$

Let

$$\chi(t, x, \xi) = 1_{0 < \xi < \rho(x, t)} - 1_{\rho(x, t) < \xi < 0}.$$

Then, informally,

$$\partial_t \chi = m\xi^{m-1} \Delta_x \chi - g(x,t) (\partial_\xi \xi^{\frac{m}{2}}) \nabla_x \chi + (\nabla_x g(x,t)) \xi^{\frac{m}{2}} \partial_\xi \chi + \partial_\xi p$$

with *p* parabolic defect measure

$$p=\delta(\xi-
ho)4rac{\xi^m}{\xi^{m-1}}|
abla
ho^{rac{m}{2}}|^2.$$

- How to make that rigorous? Take convolution

$$\rho^{\varepsilon} = \varphi^{\varepsilon} *_{x} \rho.$$

Commutator errors,

$$\begin{split} \partial_t \rho^{\varepsilon} &= \varphi^{\varepsilon} * \partial_t \rho = \varphi^{\varepsilon} * (\Delta \rho^m + \operatorname{div}(\rho^{\frac{m}{2}}g)) \\ &= \Delta(\varphi^{\varepsilon} * \rho^m) + \operatorname{div}(\varphi^{\varepsilon} * (\rho^{\frac{m}{2}}g)) \\ &= \Delta(\rho^{\varepsilon})^m + \operatorname{div}((\rho^{\varepsilon})^{\frac{m}{2}}g) \\ &+ \Delta(\varphi^{\varepsilon} * \rho^m) - \Delta(\rho^{\varepsilon})^m \\ &+ \operatorname{div}((\varphi^{\varepsilon} * \rho^{\frac{m}{2}})g) - \operatorname{div}((\rho^{\varepsilon})^{\frac{m}{2}}g) \\ &+ \operatorname{div}(\varphi^{\varepsilon} * (\rho^{\frac{m}{2}}g)) - \operatorname{div}((\varphi^{\varepsilon} * \rho^{\frac{m}{2}})g) \end{split}$$

- Note: Additional commutator errors by commuting convolution and nonlinearities!
- Commutator estimate using non-standard (optimal) regularity $ho^{rac{m}{2}}\in L^2_t\dot{H}^1_x$
- Additional renormalization step to compensate low time integrability $\rho^{\frac{m}{2}}g \in L^1_t L^1_x$.

Ansatz for uniqueness: Show that every weak solution is a renormalized entropy solution (extending the concepts of DiPerna-Lions, Ambrosio to nonlinear PDE).

Theorem

A function $\rho \in L^{\infty}_{t}L^{1}_{x}$ is a weak solution to

$$\partial_t \rho = 2 \operatorname{div}(\rho^{\frac{m}{2}} \nabla \rho^{\frac{m}{2}}) + \operatorname{div}(\rho^{\frac{m}{2}}g)$$

if and only if ρ is a renormalized entropy solution. Uniqueness for renormalized entropy solutions (variable doubling)

- Additional errors from space-inhomogeneity (with little regularity)
- Note: Entropy dissipation measure

$$q(x,\xi,t)=\delta(\xi-
ho(x,t))4rac{\xi^m}{\xi^{m-1}}|
abla
ho^{rac{m}{2}}|^2$$

does not satisfy

$$\lim_{|\xi|\to\infty}\int_{t,x}q(x,\xi,t)\,dxdt=0.$$

- Established arguments [Chen, Perthame; 2003] not applicable.

Theorem (The skeleton equation) Let $g \in L^2([0, T] \times \mathbb{T}^d; \mathbb{R}^d)$, $\rho_0 \in L^1(\mathbb{T}^d)$ non-negative and $\int \rho_0 \log(\rho_0) dx < \infty, \ m \in [1,\infty).$ 1. There is a unique weak solution $\partial_t \rho = \Delta \rho^m + div(\rho^{\frac{m}{2}}g) \quad on \ \mathbb{R}_+ \times \mathbb{T}^d.$ (*) For two weak solutions $\rho^1, \rho^2 \in L^{\infty}([0, T]; L^1(\mathbb{T}^1))$ we have $\|\rho^{1} - \rho^{2}\|_{L^{\infty}([0,T];L^{1}(\mathbb{T}^{d}))} \leq \|\rho^{1}_{0} - \rho^{2}_{0}\|_{L^{1}(\mathbb{T}^{d})}.$ 2. Let $\{g_n\}_{n\in\mathbb{N}}\subseteq L^2([0,T]\times\mathbb{T}^d;\mathbb{R}^d)$ with $\lim_{n \to \infty} g_n = g \quad weakly \ in \ L^2([0, T] \times \mathbb{T}^d; \mathbb{R}^d)$

and let $\rho_n \in L^1([0, T]; L^1(\mathbb{T}^d))$ be the corresponding solutions with control g_n . Then,

 $\lim_{n \to \infty} \rho_n = \rho \ strongly \ in \ L^1([0, T]; L^1(\mathbb{T}^d))$

where $\rho \in L^1([0, T]; L^1(\mathbb{T}^d))$ is the solution with control g.

Consider

$$d
ho^N = \Delta(
ho^N)^m dt + rac{1}{\sqrt{N}} {
m div} \left((
ho^N)^{rac{m}{2}} \circ dW^{K(N)}(t)
ight).$$

Theorem (Large deviation principle) Let K(N), $n(N) \to \infty$ with $\frac{K(N)^3}{N} \to 0$ for $N \to \infty$. For $\rho_0 \in L^{m+1}(\mathbb{T}^d)$ and $\rho \in L^{\infty}([0, T]; L^1(\mathbb{T}^d))$ let

$$I_{
ho_0}(
ho) := \inf \left\{ rac{1}{2} \int_0^T \|g(s)\|_{L^2_x}^2 ds: \ g \in L^2_{t,x}, \, \partial_t
ho = \Delta
ho^m + {\it div}(
ho^{rac{m}{2}}g)
ight\}$$

Then, the family $\{\rho^N\}$ satisfies the large deviation principle on $L^{\infty}([0, T]; L^1(\mathbb{T}^d))$ with good rate function I_{ρ_0} , uniformly on compact subsets of $L^{m+1}(\mathbb{T}^d)$.

K Dareiotis and B Gess

Nonlinear diffusion equations with nonlinear gradient noise. Electronic Journal of Probability, 25: Paper No. 35, 43, 2020.

N. Dirr, B. Fehrman, and B. Gess. Conservative stochastic PDE and fluctuations of the symmetric simple exclusion process. arXiv:2012.02126 [math], Dec. 2020.

B. Fehrman and B. Gess. Well-posedness of nonlinear diffusion equations with nonlinear, conservative noise

Archive for Rational Mechanics and Analysis, 233(1):249-322, 2019.

B Fehrman and B Gess

Large deviations for conservative stochastic PDE and non-equilibrium fluctuations

arXiv:1910.11860 [math], Mar. 2020.

-

B. Fehrman and B. Gess.

Well-posedness of the Dean-Kawasaki and the nonlinear Dawson-Watanabe equation with correlated noise.

arXiv:2108.08858 [math], Aug. 2021.