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Plan for the talk:
1. context and explanation of the model;
2. introduction of the reflecting boundary conditions;

3. overview of the results and main difficulties:
- strong existence and uniqueness for the particle system,
- well-posedness of the limiting model
(McKean-Vlasov and Fokker-Planck equations),
- convergence results for particles and measures in the mean-field limit.




The model and the need for reflecting boundary conditions

Grid cells are type of neurons that fire at certain rates as an animal navigates
an area, storing information about its position in space. [HFM*05].
Extensive research on grid cells in the last years. [RRMM16]

Challenge: understanding the effect of noise on grid cells.
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an area, storing information about its position in space. [HFM*05].
Extensive research on grid cells in the last years. [RRMM16]

Challenge: understanding the effect of noise on grid cells.

Classical network model presented for N columns of at locations xi,...,xy € Q
with M neurons each [BF09]:
4 N M
dug(t) = ( i+ (B (xi, t Z Z Z ))dt—i—\/ odW (t)
(1)

- Q < R is the cortex: bounded domain with meas(Q) = 1 wlog

- u,z is the activity level of k" at location x; with orientation 8 = 1,2,3,4
- ¢ is the firing rate: globally Lipschitz nonlinearity

- B? is the external input: locally bounded map

- K7 is the interaction strenght: locally bounded map

—WZ is the noise: brownian motions indepedent for i, k, 8
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with M neurons each [BF09]:
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- Q < R% js the cortex: bounded domain with meas(Q) = 1 wlog

- uj, is the activity level of k" at location x; with orientation § = 1,2,3,4
- ¢ is the firing rate: globally Lipschitz nonlinearity

- B? is the external input: locally bounded map

- K7 is the interaction strenght: locally bounded map

—W,Z is the noise: brownian motions indepedent for i k 6]

Use the empirical measure fy),(t, dy, dv) = N Z Z and rewrite

.'Y(t>
1
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The model and the need for reflecting boundary conditions

In the limit M, N — oo the density (¢, x, u®) of neurons with orientation j
and activity u” at location x € Q evolves in time t according to the associated
Fokker-Planck equation:

0 FP (£, x, u)

+%(fﬁ< u’+¢ (B (x, t)+

-b\r—t

4
ZJK’YX y)v A’f”(t,y,v”)dv”dy))
=1Y@xR
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(t,x, u’e). 3
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The noise W/ can drive the activity level u/) to be negative (bad modelling)!

Even if fo(x, u) is supported in Q x R™, we might have f(t, x, u) > 0 for some u < 0.
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In the limit M, N — oo the density (¢, x, u®) of neurons with orientation j
and activity u” at location x € Q evolves in time t according to the associated
Fokker-Planck equation:

0 FP (t, x, u”)

4
+%(f’8< U’ 16 (B” (x, t)+ %Z Lﬂx YWt y, v“/)dv”dy))
o0*fF
= U(6u5)2 (t,x,u”). (3)

The noise W/ can drive the activity level u/) to be negative (bad modelling)!
Even if fo(x, u) is supported in Q x R™, we might have f(t, x, u) > 0 for some u < 0.
No-flux boundary conditions are usually added in the PDE:

((}(H‘)f"‘(tix.u/’) Ui(t.X.UW) =0.
ouP

uB =0

If £ (x, u?) is supported in u” € R* so stays f(t,x, u?) for all t > 0
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The model and the need for reflecting boundary conditions
No-flux boundary conditions can be recast as reflecting BCs at the SDE level:

ul (t) = uf (0) + V20 W (t) — €5 (t ) (% € BV, |£7] its total variation (5)
+L( £(r)+6(B° (i, r Z LXR V)V Ein(r.dy. dv) ) dr

eﬁ((t) = —|€i (t)7 wik ( ) = L 1{ui€(r):0)d|€fk|( ) for 3=1,2,3,4. (6)

These conditions force uf (t) € R* for all t >0

/IZ stands still when u/Z(t) >0 and it increases so as to push ”:Z back to RT when ulli(t) =0
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The model and the need for reflecting boundary conditions
No-flux boundary conditions can be recast as reflecting BCs at the SDE level:
ul (t) = uf (0) + V20 W (t) — €5 (t ) (% € BV, |£7] its total variation (5)

+Lf( (N +(B” (xi,r Z LXR YV fo(r, dy,dv)))) dr,

eﬁ((t) = —|€ﬁ (t)7 wik ( ) = L 1{ui€(r):0)d|€fk|( ) for 3=1,2,3,4. (6)

These conditions force uf (t) € R* for all t >0

flz stands still when “/Z(t) >0 and it increases so as to push ulz back to RT when uIZ(t) =0

One gets no-flux BCs in the PDE using Ito formula with ¢ € C2(R) such that

(0) = 0.

The term ¢4 is the reflection term coming from the "Skorokhod problem" [LS84]:
given B < RY smooth domain, x € B and w; € C([o, I),]};’d),

find x; € C([0,0), B) and £; € BVoc ([0, 0), RY) such that

{xt+£tzwt, X0 = X, (7)
by = S(t) nag(xs) d|lls, [f]e = S(t) 1{><SCFB} dlefs .

Standard SDEs and McKean-Vlasov type equations can be solved with this
reflecting BCs [Szn84].
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Plan for the remaining part of the talk:
1. context and explanation of the model;
2. introduction of the reflecting boundary conditions;

3. overview of the results and main difficulties:
- strong existence and uniqueness for the particle system,
- well-posedness of the limiting model
(McKean-Vlasov and Fokker-Planck equations),
- convergence results for particles and measures in the mean-field limit.
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The particle system

Merge the orientations 8 = 1,2,3,4 and recast the model in abstract form

t

U,‘k(t) = u,-k(O) + f b(X,',S7 U,‘k(S), fMN(S)) ds + @W,k(t) — f,‘k(t) s

fik(t)=L”aR4(U:k( ) e, V) = |, Lioeas e ).

[ ]
o . (8)
where fyn(t, dx, du) Z Cgrum(t)) € P(Q x RY) is the empirical measure.

The reflecting BCs ensure that u,-k(t) eR% forallt =0
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where fyn(t, dx, du) Z Cgrum(t)) € P(Q x RY) is the empirical measure.

The reflecting BCs ensure that u,-k(t) eRY forallt =0
According to the model we take b: Q x Ry x R* x 2(Q x R*) — R* given by
bs(x,s,u, f) = b (x,s,u) + ¢, (J bl (x,y,s,u,v) f(dy, dv)), (9)
QxR4

bg, bf Lipschitz and with linear growth in u, v € R*, uniformly in x,y € Q, t e R.




The particle system

Merge the orientations 8 = 1,2,3,4 and recast the model in abstract form

t

U,‘k(t) = u,-k(O) + f b(X,',S, U,‘k(S), fMN(S)) ds + \/5\/\/,/((1‘) — g,‘k(t) s

0 t

£(6) = | e () 16l (). 1ul(8) = | Lpuyocoms 210nl(5)
®)

4y - ..
where fyn(t, dx, du) MN Z Z S(x,um(t)) € Z(Q x R”) is the empirical measure.

j=1m=1

The reflecting BCs ensure that uy (t) € R forall t >0
According to the model we take b: @ x R x R* x 2(Q x R*) — R* given by
bs(x,s,u,f) = b} (x,s,u) + bs, (J bl (x,y,s,u,v) f(dy,dv)), (9)
QxR4

bg, b Lipschitz and with linear growth in u, v € R*, uniformly in x,y € Q, t e R*,

Theorem (Strong ezistence and uniqueness for the particle systems)

For any initial data satisfying sup; <; <y supy<x<m E[ui(0)] < +00, there exists
a pathwise unique solution of the particle system.

All the results extend to general integral diffusion terms o(x, s, u, f), but 4
moments are needed to control the stochastic integrals.




The limiting model
The limiting behaviour is described by the associated McKean-Vlasov equation:
t

i(x, t) = u(x,0) +J b(x, s, 8(x, ), £(5)) ds + VITW(x, £) — Z(x, 1),

fx)= | nsral(x,5)) dlZx, | (5), [T, )(6) = | B x5,

- W(x, t)is a 4-dimensional space-time white noise in @ x R (10)

- u(x,0) is a familiy of initial conditions for each x € Q

For fixed x € Q the term £(x, t) is the reflection term of the Skorokhod problem.
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- u(x,0) is a familiy of initial conditions for each x € Q

For fixed x € Q the term £(x, t) is the reflection term of the Skorokhod problem.

Take f(t,x, du) = Lawga (@(x, t)) and define f(t, dx, du) ¢ 7(Q =« R*) by
setting -
[ o(x, u)f(t,dx, du) := J J o(x, u)f(t,x,du)dx Ve € Cp. (11)
JQxR4 JQ JRr4
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The limiting model
The limiting behaviour is described by the associated McKean-Vlasov equation:
t

i(x, t) = u(x,0) +J b(x, s, 8(x, ), £(5)) ds + VITW(x, £) — Z(x, 1),

7, 8) = [ moea(a9) T ). 7061 (0)= [ Lagerecns T, ] (5)-

- W(x, t)is a 4-dimensional space-time white noise in Q x R (10)

- u(x,0) is a familiy of initial conditions for each x € Q

For fixed x € Q the term £(x, t) is the reflection term of the Skorokhod problem.

Take f(t,x, du) = Lawga (@(x, t)) and define f(t, dx, du) ¢ 7(Q =« R*) by

setting -

o(x, u)f(t,dx, du) = J J p(x,u)f(t,x,du)dx Vee Cp. (11)
Jo Jra

JQxR4
The difficulty is d(x, t) interacts with Lawga(a(y, t)) for all y € Q, not just x.
a contraction argument in L% (Q;...) is needed...
Theorem (Strong existence and uniqueness for the McKean-Vlasov equation)

For any initial data satisfying the condition sup,.o E[u(x,0)?] < 0, there
exists a pathwise unique solution u(x,t) of the McKean-Vlasov equation,
defined over all [0,0). Moreover, for any T > 0 we have the estimate

supE[ sup |u(x, t)’] < C(T,b,0)(1+ supEllu(x,01’]).  (12)

x€Q  te[0,T] x€Q 8/12



The limiting model
The density f(t, x, du) = Lawga (@(x, t)) evolves according to the FP equation:

0f (£, u) + V- (b(x, t, u, F(£))F(t,x, u)) = oAf(t,x, ), (13)
for 8 =1,2,3,4. (14)

No-flux boundary conditions (14) are obtained using Ito formula on
McKean-Vlasov particles with ¢ € CZ(R*) such that V¢ - Nops = 0.
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Theorem (Well-posedness of the non-linear Fokker-Planck equation)

For any initial data fo(x, du) € L®(Q; 22(R*)), that is satisfying the condition
SUP,cq Spa |Ul® fo(x, du) < 400, there exists a unique weak solution

f(t,x,du) € L(Q; C([0,0); Z2(R*))) of the non-linear Fokker-Planck
equation with no-flux boundary conditions (13)-(14).
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Theorem (Well-posedness of the non-linear Fokker-Planck equation)

For any initial data fo(x, du) € L®(Q; 22(R*)), that is satisfying the condition
SUP,cq Spa |Ul® fo(x, du) < 400, there exists a unique weak solution

f(t,x,du) € L(Q; C([0,0); Z2(R*))) of the non-linear Fokker-Planck
equation with no-flux boundary conditions (13)-(14).

For each 3, integrating (13) in R® over the remaining variable 4 yields the
PDE (3) satisfied by the marginal densities (¢, x, u®)...

Corollary

Solutions corresponding to decoupled initial data fo(x, u) = HB foﬁ(x, u?) stay

decoupled, that is f(t, x,u) =[], f2(t,x, uP) for all t > 0.




The coupling method for convergence of particles

For fixed M, N € N, take the following RVs independent of each other:

- X; space points with uniform law in Q, i.i.d. for i € N

- Wi(x, t) 4-dimensional space-time noise terms on @ x R, i.i.d. for ke N
- uk(x, 0) initial conditions for each x € Q, i.i.d. for ke N
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For fixed M, N € N, take the following RVs independent of each other:

- X; space points with uniform law in Q, i.i.d. for i € N

- Wi(x, t) 4-dimensional space-time noise terms on @ x R, i.i.d. for ke N
- uk(x, 0) initial conditions for each x € Q, i.i.d. for k e N

Fori=1,...,Nand k=1,..., M let ui(t) be the solution of the particle
system with initial data u,(Xi,0) and Brownian motions Wi (X, t).
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Problem: &y and &jn, are independent only if both i # j and k # m occur!

The initial conditions are not decorrelated in space in general:

according to the model we expect ug(x,0) ~ ug(y,0) for x ~ y.
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Theorem (Mean squared error estimates)
For any T > 0 the following estimate holds

E[ sup |ui(t)— Gu(t)P]E < C(T, b, o) 1|~ + = (1+supE[uk(x, 0)2]%) . (15)
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system with initial data ux(X;,0) and Brownian motions Wi (Xi, t).

Let dk(x,t) be the solution of the McKean-Vlasov equations with initial data
uk(x,0) and white-noise W (x, t); then set i (t) = Tk (X, t).

Everything is exchangeable in both / and k.

Problem: &y and &jn, are independent only if both i # j and k # m occur!

The initial conditions are not decorrelated in space in general:

according to the model we expect ug(x,0) ~ ug(y,0) for x ~ y.

Theorem (Mean squared error estimates)

For any T > 0 the following estimate holds
[ sup [u(£)~ (D] < C(T, b,0) | 1+ 1 (1+sup Elui(x,0)%]2 ) . (15)
te[0,T] M N x€Q

Rate \%wLﬁ in place of the usual \ﬁ for MN particles [Szn91] owing to the problem

fewer cancellations, up to ~ M2N + MN? couples out of M2N? in total may survive.
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Convergence of empirical measures

Consider the empirical measure of the actual particles
N M

1
1‘-/\/”\/(1'7 dx, dLl = V Z Z J(va“jm(f)) € @(Q X R4). (16)
j=1m=1
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Convergence of empirical measures

Consider the empirical measure of the actual particles

fMN(t dx, dLl = V Z > XJ jm(t)) € @(Q X R4) (16)
Let f(t,x, du) = Lawga(@(x,t)) and f(t ,dx, du) € 2(Q x R*) defined by
setting
p(x, u)f(t, dx,du) = f J p(x, u)f(t,x,du)dx VYepe Cp. (17)
QxR4 Q Jr4
FACT: we have f(t,dx, du) = Lawg,ga ((Xi, (Xi, t)). (18)

We want to show fyy — f, consider the splitting

Wi(Q x R)(fuw(t), £(t)) < Walfun(t), fun () + Wi (fun(t), F(t)), (19)

A B
for the empirical measure of McKean-Vlasov particles

fun (t, dx, du) = 2 Z (X, jm(£)) - (20)
J 1m=1

Term A is handled with the mean squared error estimates K[ sup |uj (t) — G (t)|?]

te[0,T]
and the trivial pairing 7o MN Z Z (X5, X j (£) s i (£)) -

j=1m=1 11/12




Convergence of empirical measures
We want to show fyy — f, consider the splitting
Wi(Q x RY)(fun(t), £(t)) < Walfun(t), fun(£)) + Wa(Fun(t), £(t)) . (21)
A B

Term B goes to 0 by Glivenko-Cantelli and the relation between weak
convergence and Wasserstein distance, but we'd lose the rate of convergence...

N M
1 _
WWWMZW;ngmfmmmqmwwwmm

(22)
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Convergence of empirical measures
We want to show fyy — f, consider the splitting
Wi(Q x R*)(fuw(t), F(£)) < Wa(fuw(t), fun(t)) + Wa(fuw(2), f(1)) . (21)
A B

Term B goes to 0 by Glivenko-Cantelli and the relation between weak
convergence and Wasserstein distance, but we'd lose the rate of convergence...

N M
_ 1 _
(£, dbx, du) = 5 37 D Sixaatey s F(E dx, du) = Lawg e (X3, B(XG, 1))

j=1m=1

(22)

Fournier and Guillin [FG13] give sharp estimates for convergence in Wasserstein
distance of empirical measures of i.i.d. particles towards their actual law
+ introduce modifications to adapt the result to our context
(owing to the problem).
the Ty are exchangeable in i and k, but i and &, are

independent only if both / # j and k # m occur!




Convergence of empirical measures
We want to show fyy — f, consider the splitting
W1(Q x R*)(fun(t), F(£)) < Wa(fuw(t), fun(t)) + Wa(fum(t), F(1)) . (21)
A B

Term B goes to 0 by Glivenko-Cantelli and the relation between weak
convergence and Wasserstein distance, but we'd lose the rate of convergence...

N M
= 1 N O _
(8, 0, du) = DT S s (£ A, du) = Lawguza (X, 5(X, 1))
j=1m=1

(22)

Fournier and Guillin [FG13] give sharp estimates for convergence in Wasserstein
distance of empirical measures of i.i.d. particles towards their actual law
+ introduce modifications to adapt the result to our context
(owing to the problem).
the Ty are exchangeable in i and k, but i and &, are

independent only if both / # j and k # m occur!

Theorem (Rate of convergence for empirical measures)

As M, N — oo we have that fyy converges towards f in the following sense

1 1 1 4+1d

sup E[Wi(fum(t), f(t))] < C(T, b,0,Q)(1+supE PP (L)
Sup E[Wa(fun(2), f(1)] < C(T, b0 ) (1rsup Bl 0)P13) (35+y)
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