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Plan for the talk:

1. context and explanation of the model;

2. introduction of the reflecting boundary conditions;

3. overview of the results and main difficulties:
- strong existence and uniqueness for the particle system,
- well-posedness of the limiting model

(McKean-Vlasov and Fokker-Planck equations),
- convergence results for particles and measures in the mean-field limit.
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The model and the need for reflecting boundary conditions
Grid cells are type of neurons that fire at certain rates as an animal navigates
an area, storing information about its position in space. [HFM`05].
Extensive research on grid cells in the last years. [RRMM16]
Challenge: understanding the effect of noise on grid cells.

Classical network model presented for N columns of at locations x1, . . . , xN P Q
with M neurons each [BF09]:

duβikptq “
´

´uβik`φ
`

Bβpxi , tq`
1

4MN

4
ÿ

γ“1

N
ÿ

j“1

M
ÿ

m“1

Kγ
pxi´xjqu

γ
jm

˘

¯

dt`
?
2σdW β

ik ptq

(1)
- Q Ď RdQ is the cortex: bounded domain with measpQq “ 1 wlog
- uβik is the activity level of k th at location xi with orientation β “ 1, 2, 3, 4
- φ is the firing rate: globally Lipschitz nonlinearity
- Bβ is the external input: locally bounded map
- Kγ is the interaction strenght: locally bounded map
-W β

ik is the noise: brownian motions indepedent for i , k, β

Use the empirical measure f γMNpt, dy , dvq “
1

MN

N
ÿ

j“1

M
ÿ

m“1

δ`
xj ,u

γ
jmptq

˘ and rewrite

1
MN

N
ÿ

j“1

M
ÿ

m“1
Kγpxi ´ xj qu

γ
jm “

ż

QˆR
Kγpxi ´ yqv f γMNpt, dy , dvq . (2)
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The model and the need for reflecting boundary conditions

In the limit M,N Ñ8 the density f βpt, x , uβq of neurons with orientation β
and activity uβ at location x P Q evolves in time t according to the associated
Fokker-Planck equation:

Bt f
β
pt, x , uβq

`
B

Buβ

´

f β
´

´uβ`φ
`

Bβpx , tq`
1
4

4
ÿ

γ“1

ż

QˆR
Kγ
px´yqvγ f γpt, y , vγqdvγdy

˘

¯

“ σ
B

2f β

pBuβq2
pt, x , uβq . (3)

The noise W β
ik can drive the activity level uβik to be negative (bad modelling)!

Even if f0px , uq is supported in Q ˆ R`, we might have f pt, x , uq ą 0 for some u ă 0.

No-flux boundary conditions are usually added in the PDE:

´

φp. . . qf βpt, x , uβq ´ σ
Bf β

Buβ
pt, x , uβq

¯

ˇ

ˇ

uβ“0 “ 0 . (4)

If f β0 px , u
β
q is supported in uβ P R` so stays f βpt, x , uβq for all t ě 0.
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The model and the need for reflecting boundary conditions
No-flux boundary conditions can be recast as reflecting BCs at the SDE level:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

uβikptq “ uβikp0q `
?
2σW β

ik ptq ´ `
β
ikptq `βik P BV , |`βik | its total variation (5)

`

ż t

0

´

´ uβikprq`φ
`

Bβpxi , rq`
1
4

4
ÿ

γ“1

ż

QˆR
Kγ
pxi ´ yqv f γMNpr , dy , dvqq

˘

¯

dr ,

`βikptq “ ´|`
β
ik |ptq , |`βik |ptq “

ż t

0
1
tu

β
ik
prq“0ud |`

β
ik |prq for β “ 1, 2, 3, 4 . (6)

These conditions force uβikptq P R` for all t ě 0.

`βik stands still when uβik ptqą0 and it increases so as to push uβik back to R` when uβik ptq“0

One gets no-flux BCs in the PDE using Ito formula with ϕ P C 2
c pRq such that

9ϕp0q “ 0.

The term `βik is the reflection term coming from the "Skorokhod problem" [LS84]:

given B Ď Rd smooth domain, x P B and wt P Cpr0,8q,Rd q,

find xt P Cpr0,8q, B̄q and `t P BVloc pr0,8q,Rd q such that
"

xt ` `t “ wt , x0 “ x ,

`t “
şt
0 nBBpxsq d |`|s , |`|t “

şt
0 1txsPBBu d |`|s .

(7)

Standard SDEs and McKean-Vlasov type equations can be solved with this
reflecting BCs [Szn84].
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Plan for the remaining part of the talk:

1. context and explanation of the model;

2. introduction of the reflecting boundary conditions;

3. overview of the results and main difficulties:
- strong existence and uniqueness for the particle system,
- well-posedness of the limiting model

(McKean-Vlasov and Fokker-Planck equations),
- convergence results for particles and measures in the mean-field limit.
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The particle system
Merge the orientations β “ 1, 2, 3, 4 and recast the model in abstract form

$

’

’

&

’

’

%

uikptq “ uikp0q `
ż t

0
bpxi , s, uikpsq, fMNpsqq ds `

?
2σWikptq ´ `ikptq ,

`ikptq “

ż t

0
nBR4

`
puikpsqq d |`ik |psq , |`ik |ptq “

ż t

0
1tuik psqPBR4

`
ud |`ik |psq ,

(8)
where fMNpt, dx , duq “

1
MN

N
ÿ

j“1

M
ÿ

m“1

δpxj ,ujmptqq P PpQ ˆ R4
q is the empirical measure.

The reflecting BCs ensure that uikptq P R4
` for all t ě 0.

According to the model we take b : Q ˆR` ˆR4
ˆPpQ ˆR4

q Ñ R4 given by

bβpx , s, u, f q “ bβ0 px , s, uq ` φbβ

`

ż

QˆR4
bβ1 px , y , s, u, vq f pdy , dvq

˘

, (9)

bβ0 , b
β
1 Lipschitz and with linear growth in u, v P R4, uniformly in x , y P Q, t P R`.

Theorem (Strong existence and uniqueness for the particle systems)
For any initial data satisfying sup1ďiďN sup1ďkďM Eruikp0q2s ă `8, there exists
a pathwise unique solution of the particle system.

All the results extend to general integral diffusion terms σpx , s, u, f q, but 4th

moments are needed to control the stochastic integrals.
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The limiting model
The limiting behaviour is described by the associated McKean-Vlasov equation:
$

’

’

&

’

’

%

ūpx , tq “ upx , 0q `
ż t

0
bpx , s, ūpx , sq, f psqq ds `

?
2σW px , tq ´ ¯̀px , tq ,

¯̀px , tq“

ż t

0
nBR4

`
pūpx , sqq d |¯̀px , ¨q|psq, |¯̀px , ¨q|ptq“

ż t

0
1tūpx,sqPBR4

`
ud |¯̀px , ¨q|psq .

(10)- W px , tqis a 4-dimensional space-time white noise in Q ˆ R`

- upx , 0q is a familiy of initial conditions for each x P Q

For fixed x P Q the term ¯̀px , tq is the reflection term of the Skorokhod problem.

Take f pt, x , duq “ LawR4pūpx , tqq and define f pt, dx , duq P PpQ ˆ R4
q by

setting ż

QˆR4
ϕpx , uqf pt, dx , duq :“

ż

Q

ż

R4
ϕpx , uqf pt, x , duq dx @ϕ P Cb. (11)

The difficulty is ūpx , tq interacts with LawR4pūpy , tqq for all y P Q, not just x .
a contraction argument in L8pQ; . . . q is needed...

Theorem (Strong existence and uniqueness for the McKean-Vlasov equation)
For any initial data satisfying the condition supxPQ Erupx , 0q2s ă 8, there
exists a pathwise unique solution upx , tq of the McKean-Vlasov equation,
defined over all r0,8q. Moreover, for any T ą 0 we have the estimate

sup
xPQ

Er sup
tPr0,T s

|upx , tq|2s ď CpT , b, σq
´

1` sup
xPQ

Er|upx , 0q|2s
¯

. (12)
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bpx , s, ūpx , sq, f psqq ds `

?
2σW px , tq ´ ¯̀px , tq ,

¯̀px , tq“

ż t

0
nBR4

`
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1tūpx,sqPBR4

`
ud |¯̀px , ¨q|psq .

(10)- W px , tqis a 4-dimensional space-time white noise in Q ˆ R`

- upx , 0q is a familiy of initial conditions for each x P Q

For fixed x P Q the term ¯̀px , tq is the reflection term of the Skorokhod problem.
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The limiting model
The density f pt, x , duq “ LawR4pūpx , tqq evolves according to the FP equation:
$

’

&

’

%

Bt f pt, x , uq `∇u ¨

´

bpx , t, u, f ptqqf pt, x , uq
¯

“ σ∆uf pt, x , uq , (13)

bβpt, x , u, f ptqqf pt, x , uq ´ σ
B

Buβ
f pt, x , uq

ˇ

ˇ

ˇ

uβ“0
“ 0 for β “ 1, 2, 3, 4 . (14)

No-flux boundary conditions (14) are obtained using Ito formula on
McKean-Vlasov particles with ϕ P C 2

c pR4
q such that ∇ϕ ¨ nBR4
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β f
β
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The coupling method for convergence of particles
For fixed M,N P N, take the following RVs independent of each other:
- Xi space points with uniform law in Q, i.i.d. for i P N
- Wkpx , tq 4-dimensional space-time noise terms on Q ˆ R`, i.i.d. for k P N
- ukpx , 0q initial conditions for each x P Q, i.i.d. for k P N

For i “ 1, . . . ,N and k “ 1, . . . ,M let uikptq be the solution of the particle
system with initial data ukpXi , 0q and Brownian motions WkpXi , tq.

Let ūkpx , tq be the solution of the McKean-Vlasov equations with initial data
ukpx , 0q and white-noise Wkpx , tq; then set ūikptq “ ūkpXi , tq.

Everything is exchangeable in both i and k.
Problem: ūik and ūjm are independent only if both i ‰ j and k ‰ m occur!

The initial conditions are not decorrelated in space in general:

according to the model we expect uk px , 0q „ uk py , 0q for x „ y .

Theorem (Mean squared error estimates)
For any T ą 0 the following estimate holds

Er sup
tPr0,T s

|uikptq´ūikptq|
2
s

1
2 ď CpT , b, σq

c

1
M
`

1
N

´

1`sup
xPQ

Erukpx , 0q2s
1
2
¯

. (15)

Rate
b

1
M
`1

N
in place of the usual

b

1
MN

for MN particles [Szn91] owing to the problem:

fewer cancellations, up to „ M2N `MN2 couples out of M2N2 in total may survive.
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Problem: ūik and ūjm are independent only if both i ‰ j and k ‰ m occur!

The initial conditions are not decorrelated in space in general:

according to the model we expect uk px , 0q „ uk py , 0q for x „ y .

Theorem (Mean squared error estimates)
For any T ą 0 the following estimate holds

Er sup
tPr0,T s

|uikptq´ūikptq|
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Convergence of empirical measures
Consider the empirical measure of the actual particles

fMNpt, dx , duq “
1

MN

N
ÿ

j“1

M
ÿ

m“1
δpXj ,ujmptqq

P PpQ ˆ R4q . (16)

Let f pt, x , duq “ LawR4pūpx , tqq and f pt, dx , duq P PpQ ˆ R4
q defined by

setting
ż

QˆR4
ϕpx , uqf pt, dx , duq :“

ż

Q

ż

R4
ϕpx , uqf pt, x , duq dx @ϕ P Cb . (17)

FACT: we have f pt, dx , duq “ LawQˆR4ppXi , ūpXi , tqq . (18)

We want to show fMN Ñ f , consider the splitting

W1pQ ˆ R4
qpfMNptq, f ptqq ďW1pfMNptq, f̄MNptqq

looooooooooomooooooooooon

A

`W1pf̄MNptq, f ptqq
looooooooomooooooooon

B

, (19)

for the empirical measure of McKean-Vlasov particles

f̄MNpt, dx , duq “
1

MN

N
ÿ

j“1

M
ÿ

m“1
δpXj ,ūjmptqq

. (20)

Term A is handled with the mean squared error estimates Er sup
tPr0,T s

|uikptq ´ ūikptq|
2
s

and the trivial pairing π0 “
1

MN

N
ÿ

j“1

M
ÿ

m“1

δpXj ,Xj ,ujmptq,ūjmptqq.
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δpXj ,ūjmptqq

. (20)

Term A is handled with the mean squared error estimates Er sup
tPr0,T s

|uikptq ´ ūikptq|
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Convergence of empirical measures
We want to show fMN Ñ f , consider the splitting

W1pQ ˆ R4
qpfMNptq, f ptqq ďW1pfMNptq, f̄MNptqq

looooooooooomooooooooooon

A

`W1pf̄MNptq, f ptqq
looooooooomooooooooon

B

. (21)

Term B goes to 0 by Glivenko-Cantelli and the relation between weak
convergence and Wasserstein distance, but we’d lose the rate of convergence...

f̄MNpt, dx , duq “
1

MN

N
ÿ

j“1

M
ÿ

m“1

δpXj ,ūjmptqq , f pt, dx , duq “ LawQˆR4ppXi , ūpXi , tqq

(22)

Fournier and Guillin [FG13] give sharp estimates for convergence in Wasserstein
distance of empirical measures of i.i.d. particles towards their actual law

+ introduce modifications to adapt the result to our context
(owing to the problem).

the ūik are exchangeable in i and k, but ūik and ūjm are

independent only if both i ‰ j and k ‰ m occur!

Theorem (Rate of convergence for empirical measures)
As M,N Ñ8 we have that fMN converges towards f in the following sense

sup
tPr0,T s

E
“

W1pfMNptq, f ptqq
‰

ď CpT , b, σ,Qq
´

1`sup
xPQ

Er|ukpx , 0q|2s
1
2
¯´ 1

M
`

1
N

¯ 1
4`dQ.

(23)
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1
N

¯ 1
4`dQ.

(23)
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