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Stochastic porous media and fast diffusion equation

The classical porous media m € [1,00) and fast diffusion m € (0, 1] equation:

Ocu = A(Ju)™ tu).

Let @ < RY be a smooth bounded domain.
Let A(x,€) : Q x R — R?*" be smooth with bounded derivatives.

Let w; be an n-dimensional Brownian motion with w;y pathwise smooth
approximations (converging in geometric rough path topology).

For any m € (0,0) and any ug € L3 (Q) consider the problem:

dcu = Aul™ + V- (A(x, u) o dwy) on Q x (0,0),
u(x,t) =0 on 0Q x (0,00),
u(x,0) = uo(x) on Q x {0}.




1.

Some applications and links

Mean field theory: B, W independent BMs
. . . : 1
dX; = AX{ ) 0 AW + o (ue)dBe, e = 5 ) O
i=1

Conditioning wrt W;, the associated nonlinear Fokker-Plank equation is

LA (1)) + V- (A(x, 1) 0 dW). (1)

6t,u: 5

Dean-Kawasaki model: evolution of the density ¢ of particles in a fluid
subjected to its motion v ([Cornalba et al., 2018], [Donev et al., 2014])

0rc = 0Ac+ V- (cv ++/ock), & space-time white noise.  (2)

. Hydrodynamic limit of zero-range particle processes: the rescaled empirical

density converges to the solution of
Oru = Ad(u), #(u) mean local jump rate e.g. ¢(u) = |u|™*

The fluctuations of the zero-range process around the limit formally satisfy
the same LDP as the zero noise limit of the equation ([Dirr et al., 2016])

et = Ad(u - (Wo(u)E), €—0. (3)




Aims, strategies and relation to previous works

Previous results ([Fehrman and Gess, 2019],[Fehrman and Gess, 2021]):

1. For every up € L% (T9) there exists a unique pathwise kinetic solution to
o = Au™ + V- (A(x,u) o dws)  on T x (0,00). (4)

2. For every up € L% (Q) there exists a unique to pathwise kinetic solution to

O = Aul™ 4 Z fie(x)u o dwf on Q x (0, 0). (5)

k=1

Current results: existence and uniqueness for (4) on @ x R™ (pathwise kinetic
solution), associated random dynamical system, continuity of the
noise-to-solution map w; — u

® rough path theory
® kinetic formulation of the PDE [Chen and Perthame, 2003]

® sharp analytical estimates

Further aims: LDPs for the noise-to-solution map w; — u for (4) in the
zero-noise limit, connection to particle systems and mean field theory.




Plan for the remaining part of the talk:
1. derivation of the notion of pathwise kinetic solution;
2. a sketch of the existence proof;

3. overview of the results.




Kinetic formulation of the PDE
Approximating PDE (vanishing viscosity nA and regularized noise w®):
oru™ = AT 4 AU £V - (A uT)WE)  on Qe x [0,00):.  (6)

1 0<é<u
The kinetic function X : R? — R defined by X(u,£) ={ -1 u<é&é<0 satisfies

0 else ,

j S(e £)d¢  forany S : R — R smooth. (7

The kinetic formulation of (6) for x7° := X (u™°(x, t),&) on Qx x R¢ x [0,00),
e X7 = mlg|" A X +nA X" (8)
+0eA(x, Vi Vi X = Vi - Ax, ) 0g X +0e(p" +977)
for the entropy and parabolic defect measures on Q x R x (0, 00):

p,/.:(X-£7 t) :(50(5 o u//.f) n ‘vu//.:—“Z

4dm

n,e [T
(m+1)2 V()2

and q?].:': (SO(E*U,%E)

6/11



Kinetic formulation of the PDE

Weak formulation for arbitrary test functions 1 € CZ(Q x R x [0, 0)):

XU 0 1)E)Y(x, €, 1), dxd§

QxR

t=ty t1
- f X° 2 dxdedt )
t=to to JRXR

t1 51
+ J J m|§|m71 X" Ay +n )" Ay dxdEdt — J J (p™° 4+ q"%)0c1) dxdEdt
tod Q toJ QxR

xR

- J 1 X" (((%A(X, v ) Vitp — (VX-A(X,E)Wf)(%w) dxd{dt.
tod @XR

To get rid of the noise, test it against ¢°(x, &, t) solving

0t\}9 = (("gA(Xf)WtE)kaP - (VXA(XE)Wf)ag\,O, @(nya to) = @O(Xv é.)( )
10

The associated inverse characteristics for the reversed path Wy,,s == wy,—s are

to,s 1 lt, € ey
ose — v, - A(Y?QSE,E n)?,fs,E) V~Vf . (Y::),Os’ n:o,os) - (X7 5) (11)
0,

to,s

Vit = —aeA(YRS® M) i
to,s to,s

The solution to (10) is represented via inverse characteristics by

©° (X7 £ t) = @O(Yt);’,stftov n:o’iito) (12)




Rough path approach and a glimpse into existence

As ¢ — 0 the limiting RDE defines the stochastic inverse characteristics

to,s to,s) ' 'to,s

Y8 = —0cA(YSS, MSS) o digg s
) : YO8 mos) = (x,6). (13
{l—l);c;fs _ Vx . /4(\/;;,73’:7 I_I)t(o’?s) o thoys ( tg,0 tg,o) ( 6) ( )

-Rough path regularity: existence and stability up to second derivatives requires
Aec CGaHot, ([Crisan et al., 2013]).

-Characteristics 1 may change sign: we require V, - A(x,0) = 0.
-Characteristics may escape Q: we require d¢Ajsq = 0.

The inverse characteristics yield the solution ¢(x, &, t) = wo(Yé’ﬁ_m, I'I’t;’i_to) to

af(p = (afA(Xv 5) © th)VXQO - (VXA(ng) © th)a§@7 <P(X,€7 to) = 900<X(s 5))
14

The conservative structure of the equation implies the characteristics preserve
the Lebesgue measure:

J f(x,g)dxdg=J FYES, RS dxde .
R9 xR

RI xR




Rough path approach and a glimpse into existence
Continuity of the Ito-Lyons map for RDEs yields (Y*%¢, [1%5¢) — (Y*¢ M%),

Yt?if = *(WCA(YtZ‘.Sg I_Itofs‘ )Wto s e—0 Ytz{s = *(T£A<Ytz\s I_Ito 5) © dVT/to»S
% = Vi A(Ya S 57) W, M% = V- A(Yer S, M%) o diing s

Stable estimates in €, 7 such as

0 e o, 110200 f j 7l 67 P4 V(7)) Pt < C(Juo 32 gt uol 31D
],E

qe

p

and weak convergence/compactness yield u” — v and that p”° — p, q7° — gq.

Passage to the limit €,7 — 0 in the kinetic formulation of the PDE

£ X,8,€ X,8,€ t=t1 f €
X0, eV M ] = [T | e adea
X

”Q g™ )X BV, TS ) dxdEdt— f L (075407 )0 p dxdEdit
to to

J Xne
tod QX R

cAlX, )W,




Definition of pathwise kinetic solution
A pathwise kinetic solution u with initial data up € L?(Q) satisfies for any T > 0:
1. ue L2([0, T]; L2(Q));
2. ul"z' e L2([0, T]; H3(Q)); (DBCs are retained by u mjl])
3. for any p € CZ(Q x R) and any to, t1€[0, T] we have

= (15)

t=to

J J ml¢|™" 1 (u(x, g)A‘p(Ytt to? tt to ) dxd¢dt
QxR

X(u(x,t),8)e (ytxr5 to? tt to)dng

QxR

[T, e i) e
X

where p is a finite positive measure on Q x R x [0, T] and q is given by

4 m+1
a.=8(€ — ulx ) (e V()1
/4. the initial condition is enforced in the sense that
X(u(x,0),§)¢(x, §) dxd§ = X(to(x),§)p(x, &) dxd§ . (16)

QxR QxR




Overview of the results
Theorem (Ezistence and uniqueness)

For every uo € L% (Q) there exists a unique pathwise kinetic solution to
o = Aul™ + V- (A(x,u) odw:)  with DBC on @ x (0,00).  (17)

Theorem (Contraction principle)
Two pathwise kinetic solutions u®, u* with initial data ug, u3 satisfy

1 2 1 2
lu™ — u”ll o (0,002 (@) < lltlo — a2 (@) (18)

Theorem (Continuity of the noise-to-solution map)

Let up € L3 (Q) and let w" be a sequence of a-Hélder geometric rough paths
converging towards w. Let u" and u be the pathwise kinetic solutions with
initial data uo and driving signal w" and w. Then for any T > 0 we have

nan;; lu" — U”Ll([o,T];Ll(Q)) =0. (19)

Theorem (Random dynamical system)

When interpreted in the sense of pathwise kinetic solutions, equation (17)
defines a random dynamical system on L2 (Q). If u(uo, s, t, w.(w)) denote the
solution of (17) at time t, started at time s, with initial data uo € L3 (Q) and
noise w.(w), then we have for almost all w € (Q, F,P)

uuo, s, t,w.(w)) = u(uo,0,t — s, w.is(w)) forall0<s<tanduoe l3(Q). o



ﬁ Chen, G.-Q. and Perthame, B. (2003).
Well-posedness for non-isotropic degenerate parabolic-hyperbolic
equations.
Annales de I'Institut Henri Poincaré C, Analyse non linéaire,
20(4):645-668.

[@ Cornalba, F., Shardlow, T., and Zimmer, J. (2018).
From weakly interacting particles to a regularised dean—kawasaki model.
arXiv: Probability.

ﬁ Crisan, D., Diehl, J., Friz, P. K., and Oberhauser, H. (2013).
Robust filtering: Correlated noise and multidimensional observation.
The Annals of Applied Probability, 23(5):2139 — 2160.

[ Dirr, N., Stamatakis, M., and Zimmer, J. (2016).
Entropic and gradient flow formulations for nonlinear diffusion.
Journal of Mathematical Physics, 57(8).

ﬁ Donev, A., Fai, T. G., and Vanden-Eijnden, E. (2014).
A reversible mesoscopic model of diffusion in liquids: from giant
fluctuations to fick's law.
Journal of Statistical Mechanics: Theory and Experiment,
2014(4):P04004.

11/11



[§ Fehrman, B. and Gess, B. (2019).
Well-posedness of nonlinear diffusion equations with nonlinear,

conservative noise.
Archive for Rational Mechanics and Analysis, 233(1):249-322.

ﬁ Fehrman, B. and Gess, B. (2021).
Path-by-path well-posedness of nonlinear diffusion equations with
multiplicative noise.
Journal de Mathématiques Pures et Appliquées, 148:221-266.




