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What is Data Assimilation (DA)?

.
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The challenges to make accurate predictions: 

Nonlinearity of the model, Noise (Gaussian and non-Gaussian), High dimensionality

Common Data Assimilation techniques Order Model Noise

Kalman Filter (KF) High Linear Gaussian

Ensemble Kalman Filter (EnKF) High Nonlinear Gaussian

Particle Filter (PF) Low Nonlinear Non-Gaussian

Data Assimilation (DA): 

combines computational models and 

observational data with their 

uncertainties to produce an estimate 

of the state of the physical system. 



3

Order Reduction in DA:

Aishah Albarakati

Order Reduction of Models

• Project model equations onto a subspace of lower dimension

• Preserve basic dynamic character of the model

Types

• Model-based

Assimilation in the Unstable Subspace (AUS), (Trevisan and

Uboldi 2004, Carrassi et al., 2007) 

• Data-driven 

Proper Orthogonal Decomposition (POD), (Berkooz, Holmes, Lumley, 

1993) or 

Dynamic Mode Decomposition (DMD), (Rowley et al., 2009, Schmid 

2010) 

Order Reduction and Data Assimilation

• Kalman filter + AUS (Bocquet and Carrassi, 2017)

• Kalman filter + DMD (Iungo et al., 2015)

• EnKF+ POD (Popov et al., 2021)

• PF + AUS (Maclean and Van Vleck, 2021)
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Summary
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● Find a dynamically relevant reduced basis using order reduction techniques:

○ Assimilation in the Unstable Subspace (AUS).

○ Proper Orthogonal Decomposition (POD).

○ Dynamic Mode Decomposition (DMD).

● Use this basis to project the physical and data models into a reduced dimension 

subspace.

● Develop projected DA techniques:

○ Projected Particle Filter (PROJ-PF) 

○ Projected Optimal Proposal Particle Filter (PROJ-OP-PF).

● Perform data assimilation in the reduced dimension subspace.

https://arxiv.org/abs/2101.09252
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DA: Mathematical Formulation

● Consider a discrete time stochastic model:
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Nonlinear state transition

Linear observation operator

Observation noise

State noise

Estimator

+

−

Innovation 
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Particle Filters

● Particle filters run N parallel estimators                           (“particles”), associated 

● The estimate of the true state is the weighted average of particle states.

● Start with                               particles with equal weight initially 

Particle Update: 

Weights updated:

● The weights update based on the Bayes’ Theorem: 
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● Optimal = variance of the weights is minimized

● PF: innovation updates weight

OP-PF: innovation updates weight and state

Particle update:

Weight Update:

Optimal Proposal Particle Filter(OP-PF)
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Particle Filter Degeneracy

● In high dimensional spaces the importance weights are more likely to be 

degenerate (one particle gets weight one, and all others get weight zero)

● Resampling: abandon particles with very small weights  

and make multiple copies of particles with large weights.

● Lowering either the state model dimension M, observation

model dimension D or both helps in mitigating this problem. 

Aishah Albarakati

Particles
State dim.

Observation dim.

(van Leeuwen et al., 2017)

(van Leeuwen et al., 2017)
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Model Reduction by Orthogonal Projection
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Unprojected Model:

Unprojected

Full model

Reduced-order Model (ROM)

Projected

ReconstructionReduction

Orthogonal Proj. matrix
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Unprojected OP-PF

Particle update:

Weight Update:

ROM

Full Model

Reduction Reconstruction

Particle update:

Weight Update:

Proj-OP-PF
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Projected Optimal Proposal (Proj-OP-PF)
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AUS: Assimilation in the Unstable Subspace

Inputs: 

where 𝑈 is orthogonal and 𝑻 is upper triangular with positive diagonal elements

Outputs: Lyapunov vectors spanning expanding/neutral subspaces.

Proper Orthogonal Decomposition (POD) and 

Dynamic Mode Decomposition (DMD):

Data-driven (model-free) techniques that do not require any knowledge                                 

of the underlying equations.

▪ Inputs: the evolution of state vectors 𝑥𝑡 ∈ ℝ𝑀.

▪ Outputs: spatial-temporal coherent structure 

(modes) that dominate the observed data.

Reduction Techniques 

Aishah Albarakati
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Proper Orthogonal Decomposition (POD)

Given a recording of evolution of state vectors stored as a snapshot matrix

Inputs:

❖ Compute the singular value decomposition 

Outputs:

Reduce the dimension of X to a lower-dimensional matrix V by keeping Mq dominant 

spatial profiles.

Singular values
Mut. orthogonal

timeseries

Mut. orthogonal 

spatial profiles

Aishah Albarakati



13

DMD Projection:

Inputs: the evolution of snapshots 𝑥𝑡 is approximated by

• are DMD modes corresponding to a spatial profile.

• are complex-valued DMD frequencies governing growth, decay, and 

oscillation of time evolution.

• are linear combination coefficients.

Outputs: dynamically significant DMD reduced modes ordered by 𝐿2 norms

● Apply Gram-Schmidt to orthogonalize the DMD modes.

Aishah Albarakati
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Experiment Set Up:

● Offline Projection Computation

● Identical twin experiment:

● Performance indicator (lower is better):

1. RMSE (compared to the standard deviation of the observation error)

2. Resampling Percentage

Aishah Albarakati

Truth Estimates

Simulation

Snapshot 

Mode

Matrix

Orthogonal

Basis
POD

DMD QR
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Case study: Lorenz ‘96

● The model is presented as a system of ODEs:

● F determines whether the evolution will be regular or chaotic.

● M is the state dimension 

● All model variables are observed (H = Ι)

Aishah Albarakati
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Projected Models and Data: L96 (POD)
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M = 400, Mq = 400 Dq = 5, N = 20 particles

Low RMSE when the time evolution is structured
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L96: AUS, POD, and DMD
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Low RMSE and 

Resampling when 

the time evolution is 

structured (F=3)

RMSE remains an 

order of magnitude 

larger than the 

observation error (F=8)

F = 3, M = 40, Mq = 5 − 40, Dq = 5, N = 20 F = 8, M = 40, Mq = 5 − 40, Dq = 5, N = 20

M = 400, Mq = 5 − 400, Dq = 5, N = 20
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Case study: Shallow water equations (SWE)

● 𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) are velocity components and ℎ(𝑥, 𝑦, 𝑡) is the height of the 

column of water at time t

● The three fields are evaluated at a grid of 254 × 50 points, resulting in a very 

high state dimension (M = 38100)

Aishah Albarakati

(Hogan, 2014), Barotropic instability
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Projected Models and Data: SWE

Aishah Albarakati

Assimilation is successful with relatively small # of particles

M = 38100, Mq= 10 − 100 Dq = 10

Min
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SWE+DMD: Spatial distribution of error
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Full model space: M = 38100,
Reduced model space: Mq = 20

Full obs. space D = 381
Reduced obs. space: Dq = 10,

N = 5 particles

𝑀𝑞

𝑀
~2000



21

SWE+DMD: Low-rank observation operator

Aishah Albarakati

Assimilation is successful even when measurements are severely restricted

M = 38100, Mq= 10 − 100 Dq = 10, N = 5 particles
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Summary and Related Publications:

● Derived a projected data assimilation framework based on the reduced order 

model, AUS, POD and DMD.

● Reduce the dimension of state and observation models to lower dimensions  

(e.g., SWE, 38100 to 10)

● Stable RMSE for L96 and low RMSE for SWE and resampling percentage.

● Promising results for the SWE, where Proj-OP-PF with minimal tuning provides  

good results.
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