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Abstract

These are an extended version of lecture notes from a series of talks given at the
CIMPA Research School Galois Theory of Difference Equations held in Santa Marta,
Columbia, July 23-August 1, 2012.In this course, I gave an elementary introduction
to the Galois theory of linear difference equations from an algebraic and algorithmic
perspective. This theory shows how to associate a group of matrices with a linear
difference equation and shows how group theory can be used to determine properties
of the solutions of the equations.

These notes begin by giving an introduction to the theory of linear algebraic
groups, those groups that occur as Galois groups. I then present the basic features
of the Galois theory and show how this theory can be used to determine algebraic
properties of sequences of numbers determined by linear recurrences. In particular
I show how the Galois theory leads to algorithms to determine algebraic relations
among such solutions (such as the relation F (n)F (n+ 2)−F (n+ 1)2 = (−1)n among
the Fibonacci numbers F (n)) and algorithms to express such solutions in “finite
terms”.

The goal of my course and of these notes is to give an overview of algebraic
and algorithmic results in the Galois theory of linear difference equations, give a
taste of the various ingredients that are used to build this theory and describe some
of the applications. Therefore I focus on explaining definitions and statements of
results rather than giving complete proofs. I will assume that the reader has a basic
knowledge of abstract algebra (groups, rings, fields, ideals, . . . ). I hope that these
notes give enough knowledge and evoke enough interest that you will go to the sources
mentioned and delve further into the subject.
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1 Introduction

The goal of these lectures is to develop theory and algorithms that will allow us to under-
stand the algebraic behavior of sequences defined by linear recurrences. Examples of the
issues we will address are:

1. (cf. Example 6.3) The Fibonacci numbers F (n) are defined by

F (n+ 2)− F (n+ 1)− F (n) = 0, F (0) = 0, F (1) = 1.

This sequence satisfies

F (n)F (n+ 2)− F (n+ 1)2 = (−1)n.

In Section 6.1, I will describe a method to discover such identities.

2. (cf. Example 6.11) Solutions of the equation

y(n+ 2)− (2n+ 5)y(n+ 1) + (2n+ 2)y(n) = 0

have a nice “closed form”

y(n) = c12nn! + c22nn!
n∑

m=0

1

2mm!
.

In Section 6.2, I will give a formal definition of a notion of closed form solution and
discuss an algorithm to find such solutions.

3. (cf. Proposition 4.22) Let {u(n)} be a sequence of numbers satisfying, for large enough
n, both a recurrence relation

at(n)u(n+ t) + at−1(n)u(n+ t− 1) + . . .+ a0(n)u(n) = 0

and an algebraic equation

bs(n)u(n)s + bs−1(n)u(n)s−1 + . . .+ b0(n) = 0,

where the ai(n) and bi(n) are polynomials in n. In Section 4.3, I will discuss why
such a sequence must be of the form

u(n) =


f0(n) if n ≡ 0 (mod r)

f1(n) if n ≡ 1 (mod r)
...

...

fr−1(n) if n ≡ r − 1 (mod r),

for large enough n, where r is a positive integer and the fi(n) are rational functions
of n.
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These results can be derived using a Galois theory of such recurrences. The usual Galois
theory of algebraic equations associates to a polynomial equation p(x) = 0 a finite group.
Properties of the equation and its solutions are reflected in properties of the group and one
can use group theory to understand these properties and develop algorithms to determine
them as well. We will develop a Galois theory of linear recurrences (or more generally, of
what we will call difference equations). This will associate to any difference equation a
group of matrices. The group will furthermore be a linear algebraic group, that is a group
of matrices whose entries satisfy some fixed set of polynomial equations. An example of
this is the group of matrices whose determinant is 1. Properties of the difference equation
and its solutions will be mirrored in properties of the group and, in analogy with the case
of polynomial equations, the theory of linear algebraic groups will give us the tools to
understand and develop algorithms to determine these properties.

Linear algebraic groups are examples of algebraic varieties and I will start by giving an
introduction to the theory of algebraic varieties in Section 2. In Section 3, I develop a
little of the theory of linear algebraic groups. In Section 4, I will discuss the notion of a
Picard-Vessiot extension which is the analogue of a splitting field in the usual Galois theory.
In Section 5, I will finally develop the Galois theory of linear difference equations and in
Section 6, I will discuss the problem of calculating the Galois groups and determining their
properties and related properties of the linear difference equations.

Proofs of several of the results are left as exercises or, when these proofs involve concepts
not introduced in the notes or are a little too long to include in these notes, references are
given. Despite the fact that some of the results hold in positive characteristic, throughout
these notes all fields are assumed to be of characteristic 0. The symbols N,Z,Q,C
will denote the nonnegative integers, all integers, the rational numbers and the complex
numbers.

2 Algebraic Varieties

Let k be a field and k̄ some fixed algebraically closed field containing k. For example, we
could have k = Q and k̄ = C or k = Q and k̄ = Q̄, the algebraic closure of Q. If R is a
ring, we denote by R[X1, . . . , Xm] the ring of polynomials with coefficients in R. In this
section, we will give a brief and rapid introduction to the concepts of algebraic geometry
that we will need in the succeeding sections. If this topic interests you, more information
can be found in [5, 11, 18].

2.1 Varieties and Ideals

Definition 2.1 A subset V ⊂ k̄m is a k-variety if there exists a set of polynomials
{fi}i∈I ⊂ k[X1, . . . , Xm] such that V = {v ∈ k̄m | fi(v) = 0 for all fi, i ∈ I}. We
denote this by V = V ({fi}i∈I).
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Example 2.2 Let k = Q, k̄ = Q̄,m = 1. The set V = {±
√

2} = {v ∈ k̄ | v2 − 2 = 0} is
a k-variety. Note that {

√
2} is not a k-variety since any polynomial in Q[X] that vanishes

at
√

2 also vanishes at −
√

2. The set {
√

2} is a k̄-variety.

We need to note that the above definition of a k-variety is not intrinsic but depends on a
choice of k̄-basis of k̄m. A more intrinsic definition is given, for example, in ([35], Sec. 1.3.7).
When one changes bases, one can get a new k-variety that is not isomorphic to the original
one (see Example 2.21). We shall be careful to keep track of this subtlety.

Definition 2.3 Let V be a k-variety defined by {fi}i∈I ⊂ k[X1, . . . , Xm] and E a field with
k ⊂ E. We define V (E) = {v ∈ Em | fi(v) = 0 for all i ∈ I}.

Note that we always have V (k̄) = V . In the previous example, V (Q) = ∅ while V (Q) =
{±
√

2}.

Example 2.4 The k-varieties of k̄. These are: the empty set ∅ (the zero set of the poly-
nomial 1), all of k̄ (the zero set of the polynomial 0), and roots in k̄ of polynomials defined
over k. Therefore aside from k̄ itself, the k-varieties are finite sets. The previous example
shows that not all finite sets are k-varieties unless k is itself algebraically closed.

Lemma 2.5 (i) If {Vj}j∈J is a family of k-varieties, then ∩j∈JVj is a k-variety
(ii) If V and W are k-varieties, then V ∪W is a k-variety.

Lemma 2.5 (whose proof is left as an exercise) implies that the k-varieties form the set
of closed sets of a topology. This topology is called the Zariski k-topology. We will
frequently refer to k-varieties as k-closed sets to underline the topological nature of this
concept.

Let V be a k-closed set defined by {fi}i∈I ⊂ k[X1, . . . , Xm] and let I = 〈{fi}i∈I〉 ⊂
k[X1, . . . , Xm] be the ideal generated by this set. Clearly, V = {v ∈ k̄m | g(v) = 0 for all g ∈
I}. Therefore we can assume that k-closed sets are defined by ideals in k[X1, . . . , Xm], that
is V = V (I) where I is an ideal in k[X1, . . . , Xm].

Definition 2.6 Let Z ⊂ k̄m. We define

Ik(Z) = {f ∈ k[X1, . . . , Xm] | f(v) = 0 for all v ∈ Z}.

Note that Ik(Z) is an ideal and that if Z1 ⊂ Z2 then Ik(Z2) ⊂ Ik(Z1). Ik(Z) has an
additional property.

Definition 2.7 (i) An ideal I is radical if f t ∈ I for some positive integer t implies that
f ∈ I.
(ii) If I is an ideal, the radical

√
I of I is

√
I = {f | f t ∈ I for some positive integer t}.
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Example 2.8 The ideal I = 〈(x − 1)(x − 2)〉 ⊂ Q[X] is a radical ideal but 〈(x − 1)2〉 is
not radical. The radical of 〈(x− 1)2〉 is 〈x− 1〉.

Lemma 2.9 (i) For Z ⊂ k̄m, Ik(Z) is a radical ideal.
(ii) If I is an ideal then

√
I is also an ideal.

(iii) If I is a radical ideal, then
√
I = I.

Proof. (i) Easy. (ii) The only thing to prove that is not totally obvious is: f, g ∈
√
I ⇒

f + g ∈
√
I. Assume f s ∈ I, gt ∈ I. We then have

(f + g)s+t−1 =
s+t−1∑
i=0

(
s+ t− 1

i

)
f igs+t−1−i.

Note than in any product f igs+t−1−i either the exponent of f is at least s or the exponent
of g is at least t. Therefore each product lies in I and so (f + g)s+t−1 is in I. (iii) Clear.

We can now give a correspondence between k-varieties in k̄m and radical ideals in k[X1, . . . , Xm]:

k-varieties V ⇔ Radical Ideals in k[X1, . . . , Xm]

V ⇒ Ik(V )

V (I) ⇐ I

It is not hard to show that V (Ik(V )) = V for any k-variety V (this is an exercise!) The
relation between an ideal I and Ik(V (I)) is given by

Theorem 2.10 (Hilbert Nullstellensatz; Chapter I.3 [18]) If I is an ideal of k[X1, . . . , Xm]
then

Ik(V (I)) =
√
I.

Therefore we have a bijection between k-varieties and radical ideals. We will need some
more concepts and facts concerning the Zariski k-topology.

2.2 Irreducible Varieties

Definition 2.11 A k-variety V is k-reducible if V = V1∪V2 where V1, V2 are k-varieties
and V 6⊂ V1, V 6⊂ V2. If V is not k-reducible then it is k-irreducible.

Example 2.12 Let k = Q. V = {1, 0} is k-reducible but W = {±
√

2} is k-irreducible.

Lemma 2.13 V is k-irreducible if and only if Ik(V ) is a prime ideal.

Proof. Assume V is k-irreducible and let fg ∈ Ik(V ). Let V1 = V ({f} ∪ Ik(V )) and
V2 = V ({g} ∪ Ik(V )). We have V ⊂ V1 ∪ V2 so V must be a subset of one of these. Say
V ⊂ V1 and so V = V1. Therefore f vanishes on V and so f ∈ Ik(V ).

Now assume V is k-reducible, so V = V1 ∪ V2 where V1, V2 are k-varieties and V 6⊂ V1, V 6⊂
V2. We then have that Ik(V ) ( Ik(V1) and Ik(V ) ( Ik(V2). Let p1 ∈ Ik(V1)\Ik(V ) and
p2 ∈ Ik(V2)\Ik(V ). We then have p1p2 ∈ Ik(V ) so Ik(V ) is not prime.

6



Theorem 2.14 (Hilbert Basis Theorem) Any ideal I in k[X1, . . . , Xm] is finitely generated,
that is, there exist f1, . . . , ft ∈ k[X1, . . . , Xm] such that I = 〈f1, . . . , ft〉.

Proof. I reproduce the very short proof, due to Sarges [32], that is given in (Proposition
2.3, [18]). I will show that if R is a commutative ring and if there exists an ideal of R[X]
that is not finitely generated then there is an ideal of R that is not finitely generated.
Using induction, this fact will yield a proof of the Theorem. Let I be an ideal of R[X]
that is not finitely generated and let f1 be a nonzero element of I of least degree. Since
I is not finitely generated we can produce an infinite sequence of distinct polynomials
fi ∈ R[X] where each f is a element of least degree in I\〈f1, . . . , fi−1〉. Let ni be the
degree of fi and ai be the leading coefficient of fi. We have n1 ≤ n2 ≤ . . .. I claim that the
ideal (a1, . . . , an, . . .) is not finitely generated. If it were, then for some s we would have
(a1, . . . , as) = (a1, . . . , as, as+1) = . . .. We would then have that as+1 =

∑s
i=1 biai for some

bi ∈ R. Let g := fs+1 −
∑s

i=1 biX
ns+1−nifi. The element g has lower degree than fs+1 and

lies in I\(f1, . . . , fs), contradicting the choice of fs+1.

Corollary 2.15 (i) Let I1 ⊂ I2 ⊂ . . . ⊂ Ir ⊂ . . . be an ascending chain of ideals of
k[X1, . . . , Xm]. Then there exists an s such that Is = Is+1 = . . . .
(ii) If V1 ⊃ V2 ⊃ . . . ⊃ Vt ⊃ . . . is a decreasing sequence of k-closed sets, then there exists
an s such that Vs = Vs+1 = . . . .
(iii) Any nonempty collection {Vi}i∈I of k-closed sets has an element Vt minimal with
respect to containment.

Proof. (i) Let J = ∪i∈IIi. It is easy to see that J is an ideal so, by Theorem 2.14,
J = 〈f1, . . . , fr〉. There exists an s such that f1, . . . , fr ∈ Is. Therefore J ⊂ Is, Since
Is ⊂ Is+1 ⊂ . . . ⊂ J ⊂ Is we have Is = Is+1 = . . ..
The proofs of (ii) and (iii) are left as an exercise.

Corollary 2.16 Any k-closed set V is uniquely expressible as the union of k-irreducible
closed sets {V1, . . . , Vn} such that Vi 6⊂ Vj if i 6= j.

Proof. Let

S = {V | V is k-closed and cannot be expressed as a finite union of k-irreducible closed sets}.

If S 6= ∅, Corollary 2.15(iii) implies that S has a minimal element W , which must be
k-reducible. Therefore W = W1 ∪W2 where W1,W2 are k-closed. We must have W1 (
W,W2 ( W so W1,W2 6∈ S. Therefore, W1 = ∪W1,i,W2 = ∪W2,i with Wi,j k-closed and
k-irreducible. This leads to W = (∪W1,i) ∪ (∪W2,i), a contradiction.

We now write any V = ∪ri=1Vi with the Vi k-closed and k-irreducible. If one throws away
any Vi properly containing any other, we arrive at the sets claimed to exist in the Corollary.
To prove uniqueness, let V = ∪si=1Vi = ∪tj=1Wj. For each i, Vi ⊂ ∪tj=1Wj so there exists
a j such that Vi ⊂ Wj. Similarly for each Wj there is a V` such that Wj ⊂ V`. Therefore
Vi ⊂ V`, so i = ` and Vi = Wj. This implies that s = t and, after a possible renumbering,
Vi = Wi
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Definition 2.17 The Vi of Corollary 2.16 are called the irreducible components of V.

Corollary 2.18 (i) For any radical ideal I ⊂ k[X1, . . . , Xm], there exist prime ideals
P1, . . . Ps ⊂ k[X1, . . . , Xm] such that Pi 6⊂ Pj for i 6= j and I = ∩si=1Pi.
(ii) If R is a ring, finitely generated over a field k, then for any radical ideal I ⊂ R, there
exist prime ideals P1, . . . , Ps ⊂ R such that Pi 6⊂ Pj for i 6= j and I = ∩si=1Pi.

Proof. Left as an exercise.

2.3 Morphisms and Coordinate Rings

Definition 2.19 Let V ⊂ k̄m and W ⊂ k̄n be k-closed sets. A function F : V → W is a
k-morphism if there exist polynomials f1, . . . , fn ∈ k[X1, . . . , Xm] such that

F (a1, . . . , am) = (f1(a1, . . . , am), . . . , fn(a1, . . . , am))

for all (a1, . . . , am) ∈ V . A k-morphism F : V → W is a k-isomorphism if there is a
k-morphism G : W → V such that G ◦ F = idV and F ◦G = idW .

Example 2.20 Let gln be the set of n× n matrices. We can identify this with k̄n
2

so this
is a k-variety. Identifying gln × gln with k̄2n2

, one sees that the map M : gln × gln → gln
defined by M(A,B) = A ·B is a k-morphism.

Example 2.21 The sets {1,−1} and {
√

2,−
√

2} are not isomorphic as Q-varieties but
are isomorphic as C-varieties (via the isomorphism x 7→

√
2x). This is an example of how

a change of k̄-bases yields distinct k-varieties.

Lemma 2.22 k-morphisms are continuous in the Zariski k-topology.

Proof. Left as an exercise.

Of course it is too much to expect that morphisms take k-closed sets to k-closed sets. For
example, let V = V (xy− 1) ⊂ k̄2, W = k and F : V → W , F (x, y) = x. The image of F is
{x ∈ k̄ | x 6= 0}. Nonetheless, the image of a morphism is “large” in its Zariski k-closure.

Theorem 2.23 (Chevalley’s Theorem; [14], Chapter 4.4) Let V and W be as above and
F : V → W a k-morphism. Then F (V ) contains a set that is dense and open in F (V ), the
k-closure of F (V ).

Let us now consider k-morphisms F from a k-closed set V to k̄. The set of such morphisms
forms a ring under operations (F + G)(a1, . . . , am) := F (a1, . . . , am) + G(a1, . . . , am) and
(F · G)(a1, . . . , am) := F (a1, . . . , am)G(a1, . . . , am). We denote this ring by Ok(V ); it is
called the coordinate ring of V. Consider the map

Φ : k[X1, . . . , Xn]→ Ok(V )
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give by Φ(f(X1, . . . , Xn)) = the k-morphism defined by (a1, . . . , an) 7→ f(a1, . . . , an). One
can check that Φ is a ring homomorphism and that the kernel of Φ is Ik(V ). Therefore

Ok(V ) ' k[X1, . . . , Xn]/Ik(V ).

One sometimes sees the notation k[V ] for Ok(V ).

Example 2.24 (i) Ok(k̄) = k[X]
(ii) Let k = Q, V = {±

√
2}, Ik(V ) = 〈X2 − 2〉 so Ok(V ) = Q(

√
2).

Lemma 2.25 Ok(V ) is an integral domain if and only if V is k-irreducible.

Proof. Left as an exercise.

If F : V → W is a k-morphism and g ∈ Ok(W ), then g ◦ F : V → k̄ and furthermore
g ◦ F ∈ Ok(V ). We define F ∗ : Ok(W ) → Ok(V ) to be the map F ∗(g) = g ◦ F . We then
have

Lemma 2.26 (i) The map F ∗ : Ok(W ) → Ok(V ) is a k-algebra homomorphism (i.e., a
ring homomorphism that is the identity on k).
(ii) If G : Ok(W ) → Ok(V ) is a k-algebra homomorphism, then there exists a unique
k-morphism F : V → W such that G = F ∗.

Proof. (i) This follows from a straightforward verification of the definition.

(ii) Write

Ok(W ) = k[Y1, . . . , Yn]/Ik(W ) = k[y1, . . . , yn]

Ok(V ) = k[X1, . . . , Xm]/Ik(V ) = k[x1, . . . , xm].

Since G : Ok(W ) → Ok(V ) we have G(yi) = pi(x1, . . . , xm) for some pi ∈ k[X1, . . . , Xm].
Define F : k̄m → k̄n via

F (a1, . . . , am) = (p1(a1, . . . , am), . . . , pn(a1, . . . , am)).

This is a k-morphism from k̄m to k̄n. I will now show that F (V ) ⊂ W .

I first claim that for any polynomial h ∈ k[Y1, . . . , Yn],

G(h(y1, . . . , yn)) = h(p1(x1, . . . , xm), . . . , pn(x1, . . . , xm)).

This is because G is a k-algebra homomorphism and so acts in the natural way on polyno-
mial combinations of the yi. Now let (a1, . . . , am) ∈ V . We wish to show that F (a1, . . . , am) ∈
W . Recall that for any k-variety, Z, we have V (Ik(Z)) = Z, so to show that F (a1, . . . , am) ∈
W we need to show that for any h ∈ Ik(W ), we have h(p1(a1, . . . , am), . . . , pn(a1, . . . , am)) =
0. Note that for h ∈ Ik(W ) we have that h(y1, . . . , yn) = 0 so G(h(y1, . . . , yn)) = 0. This
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means that h(p1(x1, . . . , xm), . . . , pn(x1, . . . , xm)) = 0 and so h(p1(X1, . . . , Xm), . . . , pn(X1, . . . , Xm))
∈ Ik(V ). Therefore h(p1(a1, . . . , am), . . . , pn(a1, . . . , am)) = 0.

To show uniqueness, let G = F ∗1 = F ∗2 where

F1(a1, . . . , am) = (p1(a1, . . . , am), . . . , pn(a1, . . . , am)), and

F2(a1, . . . , am) = (q1(a1, . . . , am), . . . , qn(a1, . . . , am)).

We have G(yi) = pi(x1, . . . , xm) = qi(x1, . . . , xm) so pi(X1, . . . , Xm) − qi(X1, . . . , Xm) ∈
Ik(V ). Therefore pi(a1, . . . , am) = qi(a1, . . . , am) for all (a1, . . . , am) ∈ V . This yields
F1 = F2 on V .

A simple application of the previous lemma yields

Corollary 2.27 Aa k-algebra homomorphism F : V → W is an isomorphism if and only
if the map F ∗ : Ok(W )→ Ok(V ) is a k-algebra isomomorphism.

In later sections, we shall run into the following situation. Let V be a k-irreducible k-variety
and let K be a field containing k. What can be said about V as a K-variety? V need not
be K-irreducible. For example the Q-variety {±

√
2} is Q-irreducible but is C-reducible.

Nonetheless, when k is algebraically closed this loss of irreducibility does not happen. We
have the following proposition.

Proposition 2.28 Let k0 be an algebraically closed field and k1 a field containing k0. Let
V be a k0-irreducible k0-variety.

1. Ik1(V ) = k1 · Ik0(V ) that is, Ik1(V ) is the k1-span of Ik0(V ).

2. Ik1(V ) is prime and Ok1(V ) = k1 ⊗k0 Ok0(V ).

Proof. We will prove item 1. and refer the reader to [19], Corollary 4.15, Corollary 4.16,
p. 368 or [16] Ch. 0, Sec. 12, esp. Proposition 7, p. 25 for the proof of item 2.

Let f ∈ Ik1(V ) and let {αj}j∈J be a k0-basis of k1. We may write f =
∑

j∈J fjαj where fj is
a polynomial with coefficients in k0. For any v ∈ V (k0) we have f(v) = 0 so each fj(v) = 0.
Since k0 is algebraically closed, the Hilbert Nullstellensatz, Theorem 2.10, implies that each
fj ∈ Ik0(V ). Therefore Ik1(V ) ⊂ k1 · Ik0(V ). The reverse inclusion is clear.

2.4 Problems

2.1 Prove Lemma 2.5. Is the union of an infinite set of k-varieties a k-variety?

2.2 Show that any two non-empty k-open sets have a nonempty intersection.

2.3 Show that if V is a k-variety then V (Ik(V )) = V .

2.4 Prove parts (ii) and (iii) of Corollary 2.15.

10



2.5 Prove Corollary 2.18.

2.6 Prove Lemma 2.22.

2.7 Prove Lemma 2.25.

3 Linear Algebraic Groups

In this section, we give an introduction to the theory of linear algebraic groups and give
a flavor for some of the basic proofs. If this subject interests you, a good introduction is
[31]. For a more complete treatment, see [14] or [35].

3.1 Linear Algebraic Groups

In this section and Section 3.2, we will assume that all varieties are defined over an al-
gebraically closed field which we denote by C. As in the rest of the paper, we restrict
ourselves to fields of characteristic 0. We will use the terms open, closed, etc. to refer to
C-open, C-closed, etc. in the Zariski C-topology.

Let us consider the group GLn of n × n invertible matrices with entries in C. We can
identify the n2 entries of a matrix g ∈ GLn(C) with a vector in Cn2

. In this way GLn(C)
can naturally be identified with the open set {g ∈ Cn2 | det(g) 6= 0}. We would like to
think of GLn(C) as a closed set and we do this in the following way. For g ∈ GLn(C),
consider the matrix

ĝ =


0

g
...
0

0 . . . 0 det(g)−1

 .

The set of such matrices ĝ = (ĝi,j) is a closed set in C(n+1)2 defined by ĝ1,n+1 = . . . =
ĝn,n+1 = 0, ĝn+1,1 = . . . = ĝn+1,n = 0, det(ĝi,j)1≤i,j≤n · ĝn+1,n+1 = 1. Let I(GLn) be the ideal
of this closed set. The coordinate ring of GLn therefore is

OC(GLn) = C[Y1,1, . . . , Yn+1,n+1]/I(GLn) = C[y1,1, . . . , yn,n, 1/ det(yi,j)].

Although we are identifying elements g of GLn with the matrices ĝ above, we will be casual
and just refer to the original matrix g. GLn(C) is the main example of the following

Definition 3.1 A linear algebraic group is a closed subgroup of GLn.

Example 3.2 (i) SLn = {g ∈ GLn | det(g) = 1}
(ii) Tn = {g ∈ GLn | gi,j = 0 if i > j}

(iii) Ga = {
(

1 a
0 1

)
|a ∈ C} = the additive group

(iv) Gm = GL1 = {a | a ∈ C, a 6= 0} = the multiplicative group

11



From example 2.20 we see that multiplication is a morphism from GLn × GLn ⊂ C2n2
to

GLn. Furthermore, the inverse of an element (gi,j) of GLn has entries that are polynomials
in the gi,j and 1/ det(gi,j). Therefore the map g 7→ g−1 is a morphism as well.

Definition 3.3 A morphism (isomorphism) of linear algebraic groups that preserves the
group operations is called a group morphism (group isomorphism).

We now turn to some elementary properties of linear algebraic groups. One sees from
Corollary 2.16 that a linear algebraic group G may be written as an irredundant union of
irreducible varieties G = V1∪. . .∪Vt. I claim that any element g ∈ G belongs to exactly one
component. To see this let h ∈ V1, h /∈ V2 ∪ . . . ∪ Vt. For any y ∈ G the map my : G→ G
defined by my(g) = yg is an isomorphism (in the sense of varieties, not in the sense of
groups). Therefore, my permutes the components of G. For any g ∈ G, mgh−1(h) = g
so g belongs to a unique component of G and our claim is proved. In particular, the
irreducible components of G are disjoint. One usually refers to a linear algebraic group
that is irreducible as a variety as a connected linear algebraic group. In group theory the
word irreducible has other meanings.

Definition 3.4 Let G be a linear algebraic group. The unique component containing the
identity is denoted by G0 and is called the identity component of G.

Lemma 3.5 (i) G0 is a normal subgroup of G of finite index whose cosets are the compo-
nents of G.
(ii) If H is a closed subgroup of finite index in G, then G0 ⊂ H.

Proof. (i) Note that multiplication by an element of G is an isomorphism of G to itself.
Therefore, for any g ∈ G0, g−1G0 is an irreducible component of G. Since e ∈ g−1G0 ∩G0,
we have g−1G0 = G0. Therefore (G0)−1 ⊂ G0. For any g ∈ G0, we have e ∈ gG0 ∩ G0

so G0 · G0 ⊂ G0. Therefore G0 is a subgroup of G. For any g ∈ G the map y 7→ gyg−1

is an isomorphism from G to G. Since e ∈ gG0g−1 ∩ G0 we have gG0g−1 ⊂ G0 so G0 is
normal in G. Finally, if V1, . . . , Vt are the components of G, then for any gi ∈ Vi we have
gi ∈ giG0 ∩ Vi so giG

0 = Vi.

(ii) Let H be a closed subgroup of G of finite index. Each coset of H is also closed. We
have G = g1H ∪ . . . ∪ gsH with giH ∩ gjH = ∅ for i 6= j. Since G0 is irreducible, we must
have G0 ⊂ giH for some i. Since e ∈ G0, we have e ∈ giH = eH = H so G0 ⊂ H.

Many facts about linear algebraic groups can be proven using simple topological arguments.
For example, let X and Y be topological spaces, Z ⊂ X and φ : X → Y a continuous map.
Denote by Z the closure of the set Z. We then have that φ(Z) ⊂ φ(Z). Several facts about
linear algebraic groups can be deduced from this simple fact.

Lemma 3.6 If G is a linear algebraic group and H is a subgroup, then H is a linear
algebraic group.

12



Proof. Using the above observation for φ(x) = x−1 we have (H)−1 ⊂ H−1 = H. Using the
same observation for φ(x) = gx for g ∈ H, on sees that gH ⊂ gH = H and so HH ⊂ H.
If x ∈ H then Hx ⊂ H so H ·H ⊂ H.

Recall that the image of a variety does not need to be closed in general. Nonetheless, we
will show that the image of a linear algebraic group under a group morphism is closed.

Lemma 3.7 (i) If U and V are two dense open subsets of a linear algebraic group G, then
G = U · V .
(ii) If H is a subgroup of a linear algebraic group G and H contains a dense open set of its
closure, the H = H.
(iii) If φ : G → G′ is a group morphism of linear algebraic groups, then φ(G) is a closed
subgroup of G′. Furthermore, φ(G0) = (φ(G))0.

Proof. (i) Since φ(x) = x−1 is a homeomorphism of G, we have that V −1 is again a dense
open set. Furthermore, for g ∈ G, gV −1 is also a dense open subset of G. Since both gV −1

and U are dense and open, we have gV −1 ∩U 6= ∅. Therefore gv−1 = u or g = uv for some
u ∈ U, v ∈ V .
(ii) Let U ⊂ H be a dense open subset of H. From (i), we know H = U ·U ⊂ H. Therefore
H = H.
(iii) By Theorem 2.23, we know that φ(G) contains a dense open subset of φ(G). Therefore
(ii) implies that φ(G) = φ(G). To prove the second statement, note that φ(G0) is closed
and φ(G0) is of finite index in φ(G). Therefore Lemma 3.5 implies that φ(G)0 ⊂ φ(G0).
Since φ is continuous, φ(G0) is irreducible so φ(G0) ⊂ φ(G)0.

We state the following theorem without proof. It is a key result for the further study of
linear algebraic groups and a proof can be found in (Chapter 11.5, [14]).

Theorem 3.8 Let N be a normal closed subgroup of a linear algebraic group G. There
exists an integer m and a group morphism φ : G→ GLm such that kerφ = N .

Since Lemma 3.7 implies that φ(G) in the above theorem is closed and G/N ' φ(G), the
above theorem allows us to say that G/N “is” a linear algebraic group as well.

3.2 Lie-Kolchin Theorem

The following result comes from the existence of Jordan Normal Forms of matrices.

Theorem 3.9 If A is an n × n matrix with entries in C then there exists an invertible
matrix B with entries in C such that BAB−1 is an upper triangular matrix.

One would like to generalize this result to show that certain sets of matrices can be si-
multaneously put in upper triangular form. Obviously one cannot do this for all sets of
matrices but it is not hard to generalize the above result to show that if {Ai}i∈I is a set of
commuting matrices, then there exists an invertible matrix B with entries in C such that
BAiB

−1 is an upper triangular matrix for all i ∈ I. One can generalize this further.

13



Definition 3.10 A group G is solvable if there is a tower of subgroups G = G0 ⊃ G1 ⊃
. . . ⊃ Gt = {e} such that Gi+1 is normal in Gi and Gi/Gi+1 is abelian.

Example 3.11 (i) Any commutative group is solvable.
(ii) Another example is given by Tn, the group of upper triangular matrices. As Rosenlicht
points out in (p.18,[31]), the following chain of subgroups satisfies the conditions of the
definition for T4


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗


 ⊃




1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1


 ⊃




1 0 ∗ ∗
0 1 0 ∗
0 0 1 0
0 0 0 1




⊃




1 0 0 ∗
0 1 0 0
0 0 1 0
0 0 0 1


 ⊃




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




The following can be thought of as a global version of the above theorem.

Theorem 3.12 (Lie-Kolchin) If G ⊂ GLn is a connected, solvable linear algebraic group
then there exists a B ∈ GLn such that BGB−1 ⊂ Tn.

Direct proofs of Theorems 3.9 and 3.12 are given in 18 pages in [31]. One of the exercises
in this section shows that the Lie-Kolchin Theorem is not necessarily true without the
connectedness asumption.

3.3 Torsors

In this section, k is an arbitrary field and k̄ is again an algebraically closed field containing
k.

Definition 3.13 Let G ⊂ GLn be a linear algebraic group defined over k and V be a k-
closed subset of GLn. V is a k-torsor for G (also called a principal homogeneous space)
if for any v, w ∈ V there exists a g ∈ G such that v · g = w, where v · g denotes the usual
matrix multiplication.

The above is not the usual definition of a torsor (cf. [35] §2.3, [33] §5.2) but rather a special
case of the general definition that suffices for our needs. Note that since v, w ∈ GLn, the g
in the definition is unique.

Example 3.14 G is itself a k-torsor. Given u, v ∈ G, let g = v−1u.

Definition 3.15 G is called the trivial torsor for G.
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Lemma 3.16 A k-torsor for G is k-isomorphic to the trivial torsor for G if and only if
V (k) 6= ∅.

Proof. Note that e ∈ G(Q) so G has a k-point for any k. If φ : G→ V is a k-morphism,
then φ(e) is a k-point of V . Now assume v ∈ V (k). The map φ : G→ V defined by g 7→ vg
is defined over k and from the definition of k-torsor, one sees that it is an isomorphism of
k-torsors.

Example 3.17 Let k = Q, G = Z/2Z = {(±1)} ⊂ GL1(Q̄). Let V = {(±
√

2)}. V is a
k-irreducible, k-torsor for G. Note that V is not k-isomorphic to the trivial torsor for G.

If V is a k-torsor for G and g ∈ G(k), then the map ρg : v 7→ vg is a k-isomorphism of
V to itself and so induces a k-algebra isomorphism ρ∗g : Ok(V ) → Ok(V ). Explicitly, if
Ok(V ) = k[x1,1, . . . , xn,n, 1/ det(xi,j)]/I for some ideal I, then for g = (gi,j) the map ρ∗g is
given by ρ∗g(xi,j) = yi,j where (yi,j) = (xi,j)(gi,j).

Example 3.18 (Example 3.17 bis) V = {
√

2,−
√

2} and OQ(V ) = Q(
√

2). ρ∗(1)(
√

2) =√
2 and ρ∗(−1)(

√
2) = −

√
2. In this example G = {±1} is also the Galois group of Q(

√
2).

So g ∈ G acts on OQ(V ) = Q(
√

2) in two ways: first as ρ∗g and second as an element of
the Galois group. One easily sees that these actions are the same.

Theorem 3.19 Let G be a linear algebraic group defined over k.

(i) If k is algebraically closed, then any k-torsor for G is trivial.
(ii) If G = Ga,Gm or a connected solvable linear algebraic group, the any k-torsor for G
is trivial.
(iii) If G is a connected linear algebraic group defined over an algebraically closed field C
and k = C(x), then any k-torsor for G is trivial.

Proof. (i) follows from Lemma 3.16. For (ii) and (iii) see ([33], p. 150; (iii) is originally
due to T.A.Springer).

3.4 Problems

In problems [3.1]-[3.4], the algebraic groups are defined over an algebraically closed field C.

3.1 Let X be a closed subset of GLn such that e ∈ X and X is closed under products.
Show that X is a linear algebraic group. (Hint: recall that any descending chain of
closed sets X1 ⊃ X2 ⊃ . . . must stabilize.). Show the same result without assuming
that e ∈ X (but assume X is nonempty).

3.2 Let G be a connected linear algebraic group and let N be a finite normal subgroup.
Show that N ⊂ Z(G) = {g ∈ G | hg = gh for all g ∈ G}.

3.3 Prove that the sets in example 3.11(ii) show that T4 is solvable.
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3.4 The aim of this exercise is to show that the Lie-Kolchin Theorem is not true without
the connectedness assumption. We will show that a finite subgroup of Tn is abelian
and that there are solvable nonabelian finite subgroups of GL4.
(a) Let A be an n×n matrix such that Am = e. Show that if 1 is the only eigenvalue
of A, then A = e. Hint: The minimal polynomial of A divides Xm − 1 and also
(X − 1)t for some t > 0.
(b) If G is a finite subgroup of Tn then G must be abelian. Hint: Let g1, g2 ∈ G and
consider the element g1g2g

−1
1 g−1

2 ∈ G.
(c) The alternating group A4 on 4 elements can be represented as 4× 4 permutation
matrices. It is solvable but nonabelian.

3.5 Let k be any field and G = Z/2Z = {(±1)} ⊂ GL1. The aim of this exercise is to
classify the irreducible k-torsors of G in GL1(k). In particular, we will show that
there is a bijection between the k-isomorphism classes of irreducible k-torsors for this
group and the group k∗/(k∗)2, where k∗ = k\{0}. Let V be an irreducible k-torsor
in GL1(k).
(a) Show that O(V ) = k(

√
a) for some a ∈ k∗.

(b) Show that k(
√
a), a not a square in k, is isomorphic to k(

√
b) as k-algebras if and

only if a = bc2, for some c ∈ k.
(c) Show that the map V 7→ a is a well defined bijection from irreducible k-torsors
to the set k∗/(k∗)2.

4 Picard-Vessiot Extensions

Many authors (Malgrange, Umemura, Chatzidakis/Hrushovsky, André, Franke, Etingof,
Casale, Blázquez-Sanz, Wibmer,. . . ) have developed Galois theories of linear difference
equations and even extensions to nonlinear equations. Here, we will develop an algebraic
approach that is particularly successful in dealing with properties of sequences satisfying
recurrence relations. The general reference for Sections 4, 5 and 6 is [27] and the rough
notes [34].

4.1 Difference Rings and Fields

Definition 4.1 A difference ring (R, σ) is a ring together with an automorphism σ :
R → R. If R is in addition a field, we say that R is a difference field. If (R, σ) is
a difference ring, the set Rσ = {c ∈ R | σ(c) = c} is called the ring of constants of
R. If (R, σ) and (S, τ) are difference rings, a difference homomorphism of R to S is
a homomorphism φ : R → S such that φ ◦ σ = τ ◦ φ. Difference isomorphism and
difference automorphism are defined in a similar way.

One can develop a Galois theory where one only assumes that σ is injective (see the papers
of P. Nguyen[23] or M. Wibmer[36]) but the above definition will suffice for our present
purposes.
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Example 4.2 (i) Any ring with σ= identity.
(ii) (Q(

√
2, σ) where σ(

√
2) = −

√
2.

(iii) (C[x], σ) where σ(x) = x+ 1.
(iv) (C[x], σ) where σ(x) = qx, q ∈ C\{0} (linear difference equations over this difference
field are studied in the paper of Sauloy in this volume).

Example 4.3 The Ring of Germs at Infinity of Sequences Let C be a field and let SEQC

be the ring of sequences {a = (a(0), a(1), . . . , ) | a(i) ∈ C} where multiplication and ad-
dition are defined componentwise. Define a ring homomorphism σ : SEQC → SEQC as
σ((a(0), a(1), . . .)) = (a(1), a(2), . . .). Note that σ is surjective but not injective since
σ((1, 0, 0, . . .) = (0, 0, . . .). To ameliorate this, define an equivalence relation on SEQC

as follows: a ∼ b if there is an N ∈ N such that a(j) = b(j) for all j > N . One can
show that addition, multiplication and σ are well defined on equivalence classes. Further-
more, σ is now a bijection on equivalence classes. The ring SC = SEQC/ ∼ of equivalence
classes with automorphism induced by σ is called the ring of germs at infinity of se-
quences. We will frequently abuse notation and identify a sequence a with its equivalence
class. Therefore equations such as a = b must be interpreted as a(i) = b(i) for i >> 0.

One can embed C into SC by mapping c to the sequence (c, c, c, . . .). One can also embed
C(x) into SC by mapping the rational function f(x) to (0, 0, . . . , 0, f(N), f(N+1), . . .) where
N is an integer larger than any integer roots of the denominator of f .

Definition 4.4 Let (R, σ) be a difference ring. An ideal I ⊂ R is called a σ-ideal if
σ(I) ⊂ I. (R, σ) is said to be a simple difference ring if the only σ-ideals are (0) and
R.

4.2 Linear Difference Equations and Picard-Vessiot Extensions

Let (R, σ) be a difference ring and y an variable. An equation of the form

L(y) = cnσ
n(y) + cn−1σ

n−1(y) + . . .+ c0y (1)

with ci ∈ R and cn 6= 0 is called an nth order scalar difference equation. An element
z ∈ R such that L(z) = 0 is called a solution of L(y) = 0.

Example 4.5 In SC, the sequence of Fibonacci numbers F = (F (0), F (1), . . .) is a solution
of σ2(y)− σ(y)− y = 0.

Example 4.6 Let p be an integer greater than 1. The map σ(x) = xp is an injective
homomorphism for C(x) to itself. If is not surjective but this can be remedied in the
following way. Let

Kpn = C(x
1
pn ).
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One can identify Kpn with a subfield of Kpn+1 and form

Kp∞ = ∪∞n=0Kpn .

The map given by σ(x
1
pn ) = (x

1
pn )p is an isomorphism of Kp∞ to itself. Linear differ-

ence equations over Kp∞ are called Mahler equations and arise when studying generat-
ing functions of automatic sequences and other sequences arising from combinatorics (see
[8, 23, 24, 29]).

Example 4.7 Let E be an elliptic curve defined over C and K = C(x, y) its associated
function field. The curve E has a natural structure of an abelian group. Letting ⊕ denote
the group operation and P a point on E, we have a map ρP : E → E given by ρP (Q) = Q⊕P .
This map induces an automorphism σ : K → K giving (K, σ) the structure of a difference
field. Linear difference equation over this field and their Galois theory have been studied in
[9].

We will always assume that c0 6= 0 in a scalar difference equation. This is not a restriction
as far as solutions are concerned. If ci 6= 0, ci+1 = . . . = c0 = 0, then we may write

L(y) = cnσ
n(y) + . . .+ ciσ

i(y)

= σi(σ−i(cn)σn−i(y) + . . .+ σ−i(ci)y)

= σi(L̂(y))

Since σ is an automorphism, the solutions of L(y) = 0 and L̂(y) = 0 coincide.

In fact it is more convenient to deal with first order matrix difference equations

σ(Y ) = AY where A ∈ GLn(R)

where GLn(R) denotes the group of invertible matrices with entries in R. Given a scalar
difference equation with c0 6= 0, we associate to it a first order matrix difference equation
σ(Y ) = ALY where

AL =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 . . . 1 0
0 0 . . . 0 1
− c0
cn
− c1
cn
− c2
cn

. . . − cn−2

cn
− cn−1

cn


.

If z is a solution of L(y) = 0, then (z, σ(z), . . . , σn−1(z))T is a solution of σ(Y ) = ALY . In
many cases, first order matrix equations can be reduced to scalar equations. See Appendix
B of [13] for more details concerning the relation between scalar and matrix difference
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equations.

If R is a difference ring and σ(Y ) = AY is a matrix difference equation with A ∈ GLn(R)
the set of solutions of this difference equation in Rn forms a vector space over Rσ. In
general one cannot bound the dimension of this space but when one puts restrictions on R
there is a natural bound.

Lemma 4.8 Let (R, σ) be a simple difference ring and A ∈ GLn(R). Let z1, . . . , zr ∈ Rn

satisfy σ(Y ) = AY . If z1, . . . , zr are linearly dependent over R then they are linearly
dependent over Rσ.

Proof. Assume there is a relation
∑r

i=1 cizi = 0 with ci ∈ R and c1 6= 0. We can assume
that no proper subset of {z1, . . . .zr} is linearly dependent over R. The set I = {c ∈
R | there exist d2, . . . , dr ∈ R such that cz1 +

∑r
i=2 dizi = 0} is a σ-ideal and so contains 1.

Therefore we can assume that there is a relation of the form z1 +
∑r

i=2 cizi = 0. Applying σ
to z1+

∑r
i=2 cizi = 0, we have A(z1+

∑r
i=2 σ(ci)zi) = 0 so z1+

∑r
i=2 σ(ci)zi = 0. Subtracting

the original relation, we get
∑r

i=2(σ(ci)−ci)zi = 0. By minimality we must have σ(ci) = ci.

Corollary 4.9 Let (R, σ) be a simple difference ring and A ∈ GLn(R). If V = {v ∈
Rn | σ(v) = AV } then dimRσ V ≤ n.

In the Galois theory of polynomial equation, it is convenient to have a field containing all
the roots of a given polynomial. If p(X) ∈ Q[X] one can either use the fundamental theorem
of algebra to see that C is such a field or one can synthetically construct a “splitting field”.
For difference equations with coefficients in C(x), the ring SC will play a role similar to the
role C plays for the polynomial p(x) and we will see below how a synthetic approach also
allows us to find solutions. Since we would like the synthetic approach to agree with what
we see when we look at solutions in SC , we start by considering the following example.

Example 4.10 Consider the difference ring C with automorphism σ= identity and the
difference equation

σ(y) = (−1)y, (−1) ∈ GL1(C).

This equation has z = (1,−1, 1,−1, . . .) ∈ SC as a solution and the ring R = C[z] contains
all solutions in SC of this equation. Note that for

w1 = z2 + z = (2, 0, 2, 0, 2, 0, . . .)

w2 = z2 − z = (0, 2, 0, 2, 0, 2, . . .)

we have w1 · w2 = 0. Therefore the ring R has zero divisor and cannot be embedded in
a field. The ring R seems to be a natural analogue of a splitting field for the equation
σ(y) = (−1)y so we should not expect our synthetic approach to yield fields.
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Let us recall a method for constructing a splitting field for a polynomial p(X) ∈ k[X] with
k a field, p having no repeated roots and deg p = n. To construct an object that contains
n roots of p, we could consider the ring

R1 = k[X1, . . . , Xn]/〈p(X1), . . . , p(Xn)〉 .

Although p has n distinct roots in R1, this ring does not take into account possible algebraic
relations among the roots. For example, when p(X) = X3 − 2, k = Q, one sees that
R1 = Q(α1) ⊕ Q(α2) ⊕ Q(α3) where α3

i − 2 = 0 but we do not have α1 + α2 + α3 = 0.
To try to fix this, let I be a maximal ideal in k[X1, . . . , Xn] containing 〈p(X1), . . . , p(Xn)〉.
Intuitively, I is a maximal set of relations among the Xi consistent with the Xi being roots
of p(X). Let

R2 = k[X1, . . . , Xn]/I.

When p(X) = x3 − 2, we may select I = 〈X3
1 − 2, X3

2 − 2, X3
3 − 2, X1 −X2, X1 −X3〉. In

this case R2 = Q(α1) where α3
1−2 = 0. R2 therefore does not contain 3 distinct roots. The

final solution is the following. Let J be a maximal ideal containing 〈p(X1), . . . , p(Xn)〉 in
the ring k[X1, . . . , Xn, 1/

∏
i 6=j(Xi − Xj)]. The added term 1/

∏
i 6=j(Xi − Xj) is to insure

that the roots stay distinct. We then let

R = k[X1, . . . , Xn, 1/
∏
i 6=j

(Xi −Xj)]/J.

One sees that R is a field generated over k by n distinct roots of p(X) and so must be the
usual splitting field of this polynomial. Therefore, up to isomorphism, R will be indepen-
dent of the choice of J .

We now turn to constructing an object that contains as large a set as possible of solutions
of a difference equation σ(Y ) = AY . From now on we will assume that A ∈ GLn(k) where
k is a difference field. We shall follow the path we described for constructing a splitting
field of a polynomial. We wish to construct an object containing n linearly independent
solutions of σ(Y ) = AY . For this it will suffice to construct an n × n invertible matrix Z
with detZ 6= 0 that satisfies σ(Z) = AZ. The columns of Z then will span the solution
space of the equation and have dimension n. Let X = (Xi,j) be an n × n matrix of
variables. We consider the ring k[X, 1/ detX] = k[X1,1, . . . , Xn,n, 1/ detX] and extend the
automorphism σ by letting σ(X) = AX. Let I be a maximal σ-ideal in k[X, 1/ detX] and
let R = k[X, 1/ detX]/I. Note that since I is a maximal σ-ideal, R is a simple difference
ring. From the construction and Corollary 4.9, the solution space of σ(Y ) = AY has
dimension n over the field of constants Rσ.

Example 4.11 Let k = C and σ = identity. Let A = (−1) ∈ GL1(C) so our equation
is σ(y) = −y. Following the construction above, we consider the difference ring C[y, 1/y]
where σ(y) = −y. Let I = 〈y2 − 1〉. I is a σ-ideal. There are only two ideals that contain
I: P1 = 〈y− 1〉 and P2 = 〈y + 1〉. Neither is a σ-ideal, in fact, σ(P1) = P2. Therefore I is
a maximal σ-ideal. Therefore the above construction yields R = C[y, 1/y]/〈y2 − 1〉.
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Note that the map y 7→ (1,−1, 1,−1, . . .) yields a σ-isomorphism of R with
C[(1,−1, 1,−1, . . .)] ⊂ SC.

The ring R that we have constructed is an example of

Definition 4.12 Let (k, σ) be a difference field and A ∈ GLn(k). A difference ring (R, σ)
is a Picard-Vessiot ring (PV ring) for σ(Y ) = AY if

1. k ⊂ R,

2. R = k[Z, 1/ detZ] where Z ∈ GLn(R) and σ(Z) = AZ, and

3. R is a simple difference ring.

Our construction above shows that PV rings exist. We note that one can define PV rings
over rings that are more general than fields (see [1] and [36]). Regrettably, without further
assumptions, a PV ring for a difference equation need not be unique but we do have the
following result

Proposition 4.13 Let (k, σ) be a difference field with kσ algebraically closed. Let R be a
PV ring for σ(Y ) = AY,A ∈ GLn(k). Then

1. Rσ = kσ, and

2. If S is another PV ring for σ(Y ) = AY , then there exists a k-difference isomorphism
of R and S.

For the proof of the above proposition, see Lemma 1.8 and Proposition 1.9 of [27].

We now consider the finer structure of PV rings. We start with the following elementary
lemma whose proof we leave as an exercise.

Lemma 4.14 Let (R, σ) be a difference ring and I a σ-ideal of R. Then
√
I is a σ-ideal

and so every maximal σ-ideal is radical.

Note that example 4.11 shows that a maximal σ-deal need not be prime.

Let R be a PV-ring for σY = AY . Since R is a simple difference ring we may write

R = k[Y,
1

detY
]/I

where Y is a set of n2 variables and I is a maximal σ-ideal. Since I is radical, we have
that I = ∩t−1

i=0Pi for some prime ideals Pi in k[Y, 1
detY

]. Since I is invariant under σ the Pi
are permuted by σ. If a subset {Pi1 , . . . , Pir} is left invariant by σ, then Pi1 ∩ . . .∩ Pir is a
proper σ-ideal containing I. Since I is a maximal σ-ideal, we have that r = t and so, after
a possible renumbering, we may assume that σ(Pi) = Pi+1 mod t. This furthermore implies
that σt(Pi) = Pi for all i.
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I claim that each Pi is a maximal σt-ideal. If not, let Qi be a σt-ideal containing Pi. We
then have that ∩t−1

j=0σ
j(Qi) is a proper σ-invariant ideal containing I and so must equal

I ⊂ Pi. We can conclude that for some j, σj(Pi) ⊂ σj(Qi) ⊂ Pi for some j ≤ t − 1. This
in turn implies that j = 0 and so Qi = Pi.

Let Ri = k[Y, 1
detY

]/Pi. From the previous paragraph, we know that Ri is a simple σt-
difference ring. We leave it as an exercise to find a difference equation for which it is a
σt-PV extension. Let π : k[Y, 1

detY
] → R be the canonical projection with kernel I. For

each pair i 6= j, the ideal Pi + Pj is a σt-ideal containing both Pi and Pj and so, by the
previous paragraph, must be all of k[Y, 1

detY
]. Therefore the Chinese Remainder Theorem

implies that
R ' ⊕t−1

i=0Ri.

Taken together, these facts imply the following

Proposition 4.15 (Corollary 1.16, [27]) Let R be a PV extension of k for σ(Y ) = AY,A ∈
GLn(k). Then there exist e0, . . . , et−1 ∈ R such that

1. e0 + . . .+ et−1 = 1, e2
i = ei, eiej = 0 for i 6= j, and σ(ei) = ei+1 mod t.

2. R = R0 ⊕ . . .⊕Rt−1, Ri = eiR, and σ(Ri) = Ri+1 mod t.

3. Ri is an integral domain and Ri is a PV extension of (k, σt) for some equation σt(Y ) =
AiY,Ai ∈ GLn(k).

Example 4.16 Let us return to example 4.11: R = C[y, 1/y]/〈y2−1〉. We have P1 = 〈y−
1〉, P2 = 〈y+1〉. We have R = C[y, 1/y]/P1⊕C[y, 1/y]/P2 = R0⊕R1. Letting e0 = 1

2
(y2+y)

and e1 = 1
2
(y2−y), we have R0 = e0R and R1 = e1R as in the above proposition. Note that

R ' C[(1,−1, 1,−1, . . .)] and C[(1,−1, 1,−1, . . .)] ' C[(1, 0, 1, 0, . . .)] ⊕ C[(0, 1, 0, 1, . . .)]
and e0 corresponds to (1, 0, 1, 0, . . .) and e1 corresponds to (0, 1, 0, 1, . . .). They satisfy
σ2(y) = y.

This completes our discussion of a synthetic approach to constructing solutions of linear
difference equations. We had claimed that SC is an analogue of the complex numbers. This
is supported by the following result

Proposition 4.17 (c.f., Proposition 4.1 of [27], Proposition 2.1 of [34]) Let C be an al-
gebraically closed field and k a difference field with C ⊂ k ⊂ SC. If R is a PV extension
of k for σ(Y ) = AY,A ∈ GLn(k) then there exists a k-difference isomorphism from R into
SC. Furthermore, if v ∈ SnC satisfies σ(v) = Av, then, v ∈ φ(R)n.

Corollary 4.18 Let C ⊂ k ⊂ SC be as above. Let A ∈ GLn(k) and Z ∈ GLn(SC) be such
that σ(Z) = AZ. Then k[Z, 1/ det(Z)] is a PV extension of k.

Note that these results imply that there is a unique PV extension in SC for any such
equation.
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Corollary 4.19 Let C ⊂ k ⊂ SC be as above. Assume that for i = 1, . . . , `, zi ∈ SniC and
satisfies a difference equation σ(zi) = Aizi, Ai ∈ GLn1(k). Then there exists a PV extension
R ⊂ SC of k with each zi ∈ Rni.

Proof. Let R be a PV extension of k for the difference equation σ(Y ) = AY where A is
the block diagonal matrix diag(A1, . . . , A`). Proposition 4.17 implies that we can assume
that R ⊂ SC and, since σ(z) = Az for z = (z1, . . . , z`)

T , we have each entry of the z′is is in
R.

Note that the proposition and its corollaries apply to C and C(x) for any algebraically
closed field C.

4.3 Applications

Definition 4.20 Let C be a field. The interlacing u = (u(0), u(1), . . .) of sequences
v0 = (v0(0), v0(0), . . .), v1 = (v1(0), v1(1), . . .), . . . , vt−1 = (vt−1(0), vt−1(1), . . .) ∈ SC is the
sequence

(v0(0), v1(0), . . . , vt−1(0), v0(1), v1(1), . . . , vt−1(1), . . .),

that is,

u(n) =


v0(n

t
) if n ≡ 0 mod t

v1(n−1
t

) if n ≡ 1 mod t
...

...

vt−1(n−t+1
t

) if n ≡ t− 1 mod t

Proposition 4.21 (Larson/Taft, [20] for the case k = C) Let C be an algebraically
closed field and k a difference field with C ⊂ k ⊂ SC. Let u, v ∈ SC each satisfy a
linear difference equation over k and assume that uv = 0. Then there exist sequences
u0, . . . , ut−1, v0, . . . , vt−1 ∈ SC such that

1. u is the interlacing of the ui and v is the interlacing of the vi, and

2. for each i either ui = 0 or vi = 0.

Proof. By Corollary 4.19, we can assume that u and v belong to a PV extension R
of k with R ⊂ SC . By Proposition 4.15, R = R0 ⊕ . . . ⊕ Rt−1 where Ri = eiR as in
Proposition 4.15. Let ũi = eiu and ṽi = eiv. Note that ũiṽi = 0. Since Ri is an integral
domain, we must have either ũi = 0 or ṽi = 0. From Problem 4.2 below, we know that
we can assume that each ei is of the form ei(n) = 1 if n ≡ i mod t and 0 if not . Define a
sequence ui and vi by ui(j) = ũi(tj + i) and vi(j) = ṽi(tj + i). The conclusion follows.

Proposition 4.22 (Benzaghou/Bézivin [3]) Let C be an algebraically closed field and k
a difference field with C ⊂ k ⊂ SC. Let u ∈ SC satisfy a linear difference equation
over k and also satisfy a nonzero polynomial equation over k. Then u is the interlacing
of sequences, each of which lies in a finite algebraic difference field extension of k. If
k = C(x), σ(x) = x+ 1, then these elements lie in C(x).
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Proof. Let R ⊂ SC be a PV extension of k containing u and let R = ⊕t−1
i=0Ri be a

decomposition as in Proposition 4.15. Let p(X) ∈ k[X] be a polynomial such that p(u) = 0
and let pi(X) = eip(X).We then have that ũi = eiu lies in Ri and satisfies pi(ui) = 0. Since
Ri is a domain, finitely generated over k, the set of elements of Ri algebraic over k is a
finite algebraic extension. Arguing as in the proof of Proposition 4.21, we create from the
ũi sequences ui that lie in a finite algebraic extensions of k and whose interlacing yields u.
The final claim follows from the fact that there are no finite algebraic difference extension
fields of (C(x), σ), σ(x) = x+ 1 (this nontrivial fact is proven in Lemma 1.19 of [27]; for a
more detailed proof see Lemma A.2 of [4]).

4.4 Problems

4.1 Let (k, σ) be a difference field with kσ algebraically closed. Show that either σ is
trivial or it has infinite order (i.e., σn 6= identity for any positive integer n).

4.2 Let (R, σ) be a difference ring. Show that Rσ is a ring. If R is a simple difference
ring, show that Rσ is a field.

4.2 Let e0, . . . , et−1 ∈ SC be elements such that 1 = e0+. . .+et−1, σ(ei) = ei+1 mod t and
e2
i = ei, eiej = 0 if i 6= j. Show that, after a possible renumbering, ei(n) = 1 if n ≡ i

mod t and ei(n) = 0 if not .

4.4 In Proposition 4.15, each Ri is said to be a PV extension of (k, σt). Can you find a
difference equation σt(Y ) = AiY such that Ri is the PV extension for this equation?

5 Picard-Vessiot Groups

In this section, (k, σ) is a difference field with C = kσ algebraically closed.

5.1 Galois Groups of PV Extensions

Definition 5.1 Let R be a PV extension of k. The PV group Galσ(R/k) of R over k is

Galσ(R/k) = {φ : R→ R | φ is a difference automorphism of R and φ|k = identity.}

We wish to identify a PV group with a group of matrices and show that this latter group
is a linear algebraic group. We start with the following lemma.

Lemma 5.2 Let (R, σ) be a difference ring and A ∈ GLn(R), Let Z1, Z2 ∈ GLn(R) satisfy
σ(Zi) = AZi for i = 1, 2. Then there exists a U ∈ GLn(Rσ) such that Z1 = Z2U .

Proof. σ(Z−1
2 Z1) = σ(Z2)−1σ(Z1) = (Z−1

2 A−1)(AZ1) = Z−1
2 Z1. Therefore, Z−1

2 Z1 = U ∈
GLn(Rσ).
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Let R = k[Z, 1/ det(Z)] be a PV extension of k for σ(Y ) = AY . If φ ∈ Galσ(R/k), the
PV group of R, then φ(Z) ∈ GLn(R) also satisfies σ(Y ) = AY , so Lemma 5.2 implies that
there is a matrix [φ]Z ∈ GLn(Rσ) = GLn(C) such that

φ(Z) = Z[φ]Z .

The map φ 7→ [φ]Z is a group isomorphism of Galσ(R/k) into GLn(C). Note that this map
depends on our choice of Z. If W is another matrix in GLn(R) such that σ(W ) = AW ,
then Z = WU for some U ∈ GLn(C). A simple calculation shows that [φ]Z = U−1[φ]WU .
Therefore, the embedding of the PV group into GLn(C) depends on a choice of basis of the
solution space in R and changing the basis results in conjugating this image. Except when
otherwise stated, we fix a basis of this solution space throughout, suppress the subscript in
our notation and use [φ] to represent the matrix of φ.

Proposition 5.3 Let R be a PV extension of k with PV group Galσ(R/k). The group
G = {[φ] | φ ∈ Galσ(R/k)} is C-closed and therefore a linear algebraic group defined over
C.

Proof. For simplicity, I will assume that n = 2 and follow Kovacic’s proof for a similar
result in the differential case (c.f., [17]). Let

Z =

(
z1,1 z1,2

z2,1 z2,2

)
and let R0 = k[z1,1, z1,2, z2,1, z2,2]. Note that Galσ(R/k) leaves R0 stable. We may write
R0 = k[Z1,1, Z1,2Z2,1, Z2,2]/I where the Zi,j are variables and I is as ideal in k[Z1,1, Z1,2Z2,1, Z2,2].
Any

g =

(
a b
c c

)
∈ GLn(C) (2)

acts on the Zi,j via (
Z1,1 Z1,2

Z2,1 Z2,2

)
7→
(
Z1,1 Z1,2

Z2,1 Z2,2

)(
a b
c c

)
.

This matrix induces a σ-automorphism of R0 if and only if the action takes I to itself. Let
I = 〈q1, . . . , qr〉 and let m be the maximum of the degrees of the pi. Let W be the k-vector
space of polynomials in k[Z1,1, Z1,2Z2,1, Z2,2] of degree at most m and and let {pi}i∈I be a
k-basis of W ∩ I. Extend {pi}i∈I to a k-basis {pi}i∈J of W . For any g ∈ GLn(C) as in
equation (2) and i ∈ J , we have

pi(aZ1,1 + cZ1,2, . . . , bZ2,1 + dZ2,2) =
∑
j∈J

Pi,j(a, b, c, d)pj

where the Pi,j are polynomials with coefficients in k. Therefore g ∈ GLn(C) leaves I
invariant if and only if Pi,j(a, b, c, d) = 0 for all i ∈ I and j ∈ J \I. If {aα}α∈A is a C basis
of k, we may write each Pi,j =

∑
i∈A aαPi,j,α for some polynomials Pi,j,α with coefficients

in C. Therefore the polynomials {Pi,j,α | i ∈ I, j ∈ J \I, α ∈ A} define G.
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Example 5.4 Let us once again return to example 4.11: σ(y) = (−1)y, R = C[y, 1/y]/〈y2−
1〉 = C[y]/〈y2 − 1〉. The PV group may be identified with a subgroup of GL1(C). It
is the set of a ∈ C\{0} such that y 7→ ay leaves 〈y2 − 1〉 stable. The m in the above
proof is 2 and y2 − 1, y, 1 is a basis of the space W polynomials of degree at most 2 with
W ∩I = {C · (y2−1)}. If g = (a) ∈ GL1(C), then g takes Y 2−1 to a2(Y 2−1)+(a2−1) ·1,
so g ∈ G if and only if a2 − 1 = 0. Therefore G = {(±1)} = Z/2Z.

5.2 PV Extensions and Torsors

In Example 3.17, we showed that the Galois extension Q(
√

2) is coordinate ring of a torsor
of the Galois group G = {±1} and that the Galois action is the same as the action induced
by G acting on the torsor. In general, a finite Galois extension can be shown to be the
coordinate ring of a torsor of the Galois group (see Exercise A.50, p. 370 of [28]). In this
section we shall discuss the fact that PV extensions are also the coordinate rings of torsors
of their Galois groups.

Let k be a σ-field with constants kσ = C algebraically closed and let R be a PV extension
of k with PV group Galσ(R/k). We have shown above that the map φ ∈ Galσ(R/k) 7→
[φ] ∈ G ⊂ GLn(C) identifies Galσ(R/k) with a linear algebraic group defined over C. We
will need to consider points of G from extension fields of C so we emphasize the fact that
the PV group of R corresponds to the C-points of G, that is, G(C).

Since R = k[X, 1/ detX]/I for some ideal I, R is the k-coordinate ring of a k-closed subset
V of GLn(k̄). The linear algebraic group G(C) is defined over C and acts on R as k-algebra
automorphisms via the Galois action of Galσ(R/k). It is not hard to show that this action
is induced by the action of G(C) on V by right multiplication ρg : v 7→ v[g], that is,

For φ ∈ Galσ(R/k) and r ∈ R, φ(r) = ρ∗[φ](r) (3)

(see Section 2.3 to recall the meaning of the notation F ∗ for a morphism F ). Since C ⊂ k̄,
we can speak of G(k̄) and think of G as being defined over k. Furthermore, one can show
that ρg : V → V even for g ∈ G(k̄) and that this action turns V into a k-torsor for G. We
sumarize these statements in the following result (whose statement and complete proof can
be found in (p.11, [27])).

Theorem 5.5 Let R be a PV extension of k with PV group Galσ(R/k) ' G(C) ⊂ GLn(C).
Then R is the coordinate ring of a k-torsor V for G. Furthermore the Galois action of
φ ∈ Galσ(R/k) on R is given by action ρ∗[φ] on R induced by the action of [φ] ∈ G(C) on

V via right multiplication as in (3).

When k = C or k = C(x), C algebraically closed and G is a connected linear algebraic
group, we have already stated in Theorem 3.19 that a k-torsor for G is trivial. Using this
and further arguments one can show (see Proposition 1.2 of [27]) the following (note G is
not necessarily connected).
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Proposition 5.6 Let k = C, σ= identity or k = C(x), σ(x) = x + 1 and let R =
k[Z, 1/ det(Z)] be a PV extension of k with PV group Galσ(R/k) = G. Then there exists a
B ∈ GLn(k) such that BZ ∈ G(k) and the map Z 7→ BZ yields an isomorphism of R onto
Ok(G). Furthermore, G/G0 is cyclic and if we write R = ⊕t−1

i=0Ri as in Proposition 4.15,
then t = |G/G0| and Ri ' Ok(G0).

When k = C, we shall give a direct proof of this proposition in Section 6.1.

Example 5.7 We continue with example 4.11: σ(y) = (−1)y, R = C[y, 1/y]/〈y2 − 1〉 =
C[y]/〈y2 − 1〉,Galσ(R/k) = {(±1)} ' Z/2Z. In this case Ok(G) = C[X,X−1]/〈X2 − 1〉 '
R. Furthermore, R = R0 ⊕R1 where Ri ' C ' OC(G0), since G0 = {(1)}.

The previous proposition allows us to give another characterization of the PV group which
we state in the following corollary. This corollary says that, under the stated hypotheses
on the difference field k, the PV group of a difference equation σY = AY,A ∈ GLn(k) is
the smallest linear algebraic group H such that one can ”transform” A to be in H(k). An
allowable transformation is of the form A 7→ σ(B)AB−1 for some σ(B)AB−1. and this
latter transformation corresponds to a transformation Z 7→ BZ for a fundamental solution
matrix.

Corollary 5.8 Let k = C, σ= identity or k = C(x), σ(x) = x+1 and let R = k[Z, 1/ det(Z)]
be a PV extension of k for σ(Y ) = AY,A ∈ GLn(k) with PV group Galσ(R/k) ' G ∈
GLn(C). Let H be a linear algebraic group defined over C.

1. If G ⊂ H, then there exists a B ∈ GLn(k) such that σ(B)AB−1 ∈ H.

2. If there exists a B ∈ GLn(k) such that σ(B)AB−1 ∈ H, then G ⊂ H.

Therefore G ⊂ GLn(C) is the PV group of σ(Z) = AZ if and only if for any B ∈ GLn(k)
and any proper C-subgroup H of G, one has that σ(B)AB−1 6∈ H

Proof. 1. From Proposition 5.6, we know there exists an element B ∈ GLn(k) such that
BZ ∈ G ⊂ H. Since H is defined over C and BZ ∈ H we must have σ(BZ) ∈ H.
Therefore σ(BZ) = σ(B)σ(Z) = σ(B)AZ ∈ H and so σ(B)AZ(BZ)−1 = σ(B)AB−1 ∈ H

2. I start by showing that if σ(Y ) = ÃY is a difference equation with Ã ∈ H(k), then
the PV group of this equation can be embedded in GLn(C) as a subgroup of H. To see
this let J = Ik(H) be the ideal in S = k[Y, 1/ det(Y )] of elements that vanish on H. Note
that Proposition 2.28.1 implies that J = IC(H) · k. Extend σ to S by letting σ(Y ) = ÃY .
Since Ã ∈ H, J is stable under the action of σ. Therefore there exists a maximal σ-ideal
J ′ containing IC(H). The difference ring S ′ = S/J ′ is a PV ring for σ(Y ) = ÃY and the
image U of X in this ring lies in H(S ′). Any difference automorphism φ ∈ Galσ(S ′) comes
from an automorphism of S that leaves J ′ stable. Therefore φ(U) = U [φ] ∈ H(S ′) and so
[φ] = U−1φ(U) ∈ H(C).

We now return to the original equation σ(Y ) = AY,A ∈ GLn(k). Assume there exists
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B ∈ GLn(k) such that σ(B)AB−1 ∈ H. Let R = k[Z, 1/ det(Z)] be a PV extension for
σ(Y ) = AY . Let Z̃ = BZ. A calculation shows that Z̃ satisfies the equation σ(Z̃) =
(σ(B)AB−1)Z̃. By the discussion in the previous paragraph, we have that the PV group
of this equation is a subgroup of H. Clearly k[Z̃, 1/ det(Z̃)] = k[Z, 1/ det(Z)]. For any
φ ∈ Galσ(R/k) we have that Z̃[φ]Z̃ = φ(Z̃) = φ(BZ) = Bφ(Z) = BZ[φ]Z = Z̃[φ]Z .
Therefore the matrix representations of an element of the PV group with respect Z and Z̃
are the same so G ⊂ H.

5.3 Applications

We give an application of Proposition 5.6 and an application of Corollary 5.8 in this section.
The following result was conjectured in [3] and proven, when k = C, an algebraically closed
field in [2] and [20]. The result and proof appear as Proposition 3.5 of [27]. We will need
the following simple lemma.

Lemma 5.9 Let k be a difference field and T a difference ring containing k. If u ∈ T
satisfies L(u) = anσ

n(u) + an−1σ
n−1(u) + . . . + a0u = 0 with ai ∈ k and an 6= 0, then the

set {σi(u) | i = 0, 1, . . .} spans a k-vector space of dimension at most n.

Proof. Use the linear difference equation and induction on m to show that σm(u) lies in
the k-span of u, σ(u), . . . , σn−1(u) for all m.

Proposition 5.10 Let C be an algebraically closed field and k = C, σ = identity or k =
C(x), σ(x) = x + 1.If u ∈ SC is invertible in SC and u and 1/u satisfy linear difference
equations over k, then u is the interlacing of sequences ui such that for each i, σ(ui)/ui ∈ k.

Proof. Corollary 4.19 implies that u and 1/u belong to a PV extension R ⊂ SC of k. Let
R = ⊕t−1

i=0Ri as in Proposition 4.15 and let wi = u · ei. Note that each wi is invertible in
Ri. Fix a value of i, say i = 0. We shall show that σt(w0)/w0 ∈ ke0. We shall do this in
three steps.

The first step is to show that for any φ ∈ Galσt(R0/k), φ(w0) = aφw0. for some aφ ∈ k. To
do this we invoke a theorem of Rosenlicht ([30], [21]): Let G be a connected linear algebraic
group defined over an algebraically closed field k̄ and y ∈ Ok̄(G) with 1/y ∈ Ok̄(G), then
y is a k̄ multiple of a character (a character of a linear algebraic group is a morphism
χ : G → k̄∗ such that χ(gh) = χ(g)χ(h)). Proposition 5.6 implies that Ri ' Ok(G0),
where G0 is the identity component of the PV group of R over k. The group G0 is defined
over the algebraically closed field C and is C-irreducible. Proposition 2.28 implies that
G0 is still k̄-irreducible and we can apply Rosenlicht’s Theorem to w0. Therefore w0 = rχ
where r ∈ k̄ and χ ∈ Ok̄(G0) is a character. Both r and χ have coefficients that lie in a
finite normal algebraic extension k̃ of k. Taking the norm with respect to this extension we
have w0 = 1

m
Normk̃/k(r)Normk̃/k(χ) for some integer m. Note that Normk̃/k(χ) is again a

character. Therefore, we may abuse notation and write w0 = rχ where r ∈ k and χ ∈ R0

is a character. Recall that the action of the PV group of R0 = Ok(G0) over k is induced by

28



the action of the group on itself by right multiplication. Therefore for any φ ∈ Galσt(R0/k)
and h ∈ G0, φ(χ)(h) = χ(h · [φ]) = χ(h)χ([φ]) = aφχ(h) where aφ = χ([φ]). This implies
that for any φ ∈ Galσt(R0/k), φ(w0) = aφw0. for some aφ ∈ k.

The second step is to show that each of the aφ are in C. Lemma 5.9 implies that for some
r ≥ 0 we have a minimal nontrivial relation of the form

L(w0) = arσ
rt(w0) + asσ

st(w0) + . . .+ a0w0 = 0

with ai ∈ k and aras 6= 0. Applying φ we have

L(φ(w0)) = arσ
rt(φ(w0)) + asσ

st(φ(w0)) + . . .+ a0φ(w0)

= arσ
rt(aφw0) + asσ

st(aφw0) + . . .+ a0aφw0

= arσ
rt(aφ)σrt(w0) + asσ

st(aφ)σst(w0) + . . .+ a0aφw0

= 0

By minimality, we must have that σrt(aφ) = σst(aφ) so σ(r−s)t(aφ) = aφ. This implies that
aφ is algebraic over kσ = C (see Problem 5.2 below) and, since C is algebraically closed,
we have aφ ∈ C.

The third step is to finish by showing that σt(w0)/w0 ∈ k. To do this we will use Corollary
5.15 which states that an element y ∈ R0 is in k if and only if φ(y) = y for all φ ∈
Galσt(R0/k). Let φ ∈ Galσt(R0/k). Applying φ to σt(w0)/w0 ∈ k and using the fact that
aφ ∈ C, a calculation shows that φ(σt(w0)/w0) = σt(w0)/w0.

A similar argument shows that for each i, we have σt(wi)/wi = fi ∈ kei. Let ui be
the sequence defined by ui(n) = wi(tn + i). One sees that σ(ui)/ui = vi where vi(n) =
f(tn+ i) ∈ k and that u is an interlacing of u0, . . . , ut−1.

As another application we will discuss first order difference equations over C(x), σ(x) =
x+ 1, that is, difference equations of the form

y(x+ 1) = a(x)y(x). (4)

The PV group of such an equation must be GL1(C) or {(a) | an − 1 = 0} ' Z/nZ.
Corollary 5.8 implies that if the PV group is a subgroup of Z/nZ then there exists an
f ∈ C(x)∗ such that f(x+ 1)a(x)(f(x))−1 = ω where ωn = 1, that is

a(x) = ω
f(x)

f(x+ 1)
.

Example 5.11 Consider the equation y(x+ 1) = xy(x). I will show that the PV group of
this equation is GL1(C). To do this I will show that we cannot write x as ωf(x)/f(x+ 1)
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for any f(x) ∈ C(x). Assume we could. We then would have

1

x
=

x′

x

=
(ω f(x)

f(x+1)
)′

ω f(x)
f(x+1)

=
f ′(x)

f(x)
− f ′(x+ 1)

f(x+ 1)

where ′ denotes the derivative with respect x. We would therefore have

1

x
= g(x)− g(x+ 1) for some g(x) ∈ C(x).

Since 1
x

has a pole at 0, we must have that g has at least one pole. Let α1, . . . , αr be the
poles of g ordered so that g has no poles of the form α1 − n or αr + n for any positive
integer n. The function g(x + 1) therefore has a pole at α1 − 1 and at αr − 1 but no pole
at αr (otherwise g would have a pole at αr + 1). Therefore the pole of g at αr and the pole
of g(x + 1) at α1 − 1 persist in the expression g(x) − g(x + 1). Since 1

x
has only one pole

this is a contradiction.

One can use this fact to show that the Gamma Function Γ(x) is not algebraic over C(x).
If the Gamma Function were algebraic over C(x), the sequence Γ = (Γ(1), . . . ,Γ(n), . . .) =
(1, 1, . . . , (n− 1)!, . . .) ∈ SC whould be algebraic over C(x) ⊂ SC. y = Γ satisfies y(x+ 1) =
xy(x) so Corollary 4.19 implies that R = C(x)[Γ, 1/Γ] is a PV extension for this equation.
Since the PV group of this equation is GL1(C) we have R = OC(x)(GL1) = C(x)[Y, 1/Y ],
where Y is a variable. It is clear that any element of this latter ring algebraic over C(x) is
in C(x).

A complete analysis of first order difference equations is given in Section 2.1 of [27].

5.4 Galois Correspondence

In the proof of Proposition 5.10, we used the fact that an element of a PV extension that is
left fixed by the Galois group must lie in the base field. This is a key feature of the Galois
correspondence and will be used again in Section 6.1. In this section we will describe the
full Galois correspondence.

In the usual Galois theory of polynomial equations, there is a correspondence between
subgroups of the Galois group and subfields of the splitting field. We shall derive the cor-
responding result in our context. One would hope for a correspondence between subgroups
of the PV group and difference subrings of the associated PV ring but this is not true
even when one restricts to closed subgroups of the PV group (see p.16 of [27]). Such a
correspondence does exist if we replace R by a suitable “quotient field”.
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Definition 5.12 Let R be a commutative ring and let S = {s ∈ R |s is not a zero divisor in R}.
On R×S define an equivalence relation (r1, s1) ∼ (r2, s2) if r1s2−r2s1 = 0. Let Q(R) denote
the ring of equivalence classes where the ring operations are defined by (r1, s1) + (r2, s2) :=
(r1s2 + r2s1, s1s2) and (r1, s1)(r2, s2) := (r1r2, s1, s2). The ring Q(R) is called the total
quotient ring of R

Several properties of Q(R) are developed in the Problems. If (R, σ) is a difference ring then
we can make Q(R) into a difference ring by defining σ((r, s)) = (σ(r), σ(s)).

Definition 5.13 Let (k, σ) be a difference field. A total PV ring of k is the total quotient
ring Q(R) of a PV extension R of k.

Note that if G is the PV group of a PV ring R then G acts as difference automorphisms of
Q(R).

Theorem 5.14 (Fundamental Theorem of PV Theory) Let (k, σ) be a difference field with
kσ = C algebraically closed. Let R be a PV extension of k and K = Q(R) the associated
total PV ring. Let G be the PV group of R over k and let

F = {F | F is a difference ring, k ⊂ F ⊂ K, and every non-zerodivisor of F is invertible.}

G = {H | H is a C-closed subgroup of G}

For any F ∈ F , let G(K/F ) = {φ ∈ G | φ|F = identity} and for any H ∈ G, let
KH = {a ∈ K |φ(a) = a for all φ ∈ H}. Then

1. for an F ∈ F , G(K/F ) ∈ G,

2. for an H ∈ G, KH ∈ F , and

3. the maps α : F → G, α(F ) = G(K/F ) and β : G → F , β(H) = KH are inverses of
each other.

Furthermore, if H ∈ G is a normal subgroup of G then Galσ(KH/k) ' G/H.

Proof. The proof is given in Section 1.3 of [27] and uses the fact that a PV ring is the
coordinate ring for a k-torsor of its PV group.

Corollary 5.15 Let k,R,K,G be as above. If a ∈ K is left fixed by all elements of G,
then a ∈ k.

Proof. Since α and β are inverses of each other and α(k) = G, we have β(G) = LG = k.

In the following examples, k is a difference field with kσ algebraically closed.
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Example 5.16 Let σ(u) = ay, a ∈ k be a first order equation with PV group Gm (eg,
Example 5.11). In this case the PV ring is k[z, 1/z] where z is transcendental over k and
σ(z) = az. The total quotient ring is k(z). The proper algebraic subgroups of Gm are of the
form Hn = {ζ ∈ kσ | ζn = 1}. The fixed field of Hn is k(zn). Since Gm is commutative all
subgroups are normal so the Galois group of k(zn) over k is isomorphic to Gm/Hn which
is isomorphic to Gm.

Example 5.17 Let ζ be a primitive nth root of unity and consider the equation σ(y) = ζy.
As in Example 4.11, one can show that the ring R = k[y, 1/y]/(yn − 1) is the PV ring for
this equation. We have that R = ⊕n−1

i=0 Ri where Ri ' k. Furthermore, simple calculations
show

1. The PV Galois group G of R over k is Z/nZ ⊂ Gm.

2. If we write Ri = Rei as in Proposition 4.15, then

z = e0 + ζe1 + . . .+ ζn−1en−1

satisfies σ(z) = ζz.

3. If φ is an automorphism that generates of G, the φ(z) = ζz so we must have φ(ei) =
ei+1 mod n.

4. The total quotient ring K of R is R.

5. If H is a subgroup of G, then H is again cyclic and generated by φm for some m
dividing n. In this case

KH = ⊕n/m−1
i=0 Rfi where fi =

m−1∑
j=0

ei+j.

6. Since G is abelian each KH is again a total PV ring. In fact KH is the total PV ring
for σ(y) = ζn/m and

u = f0 + ζn/mf1 + . . .+ ζ(m−1)n/mfm−1 ∈ KH

is a solution of this equation.

5.5 Problems

5.1 Let R be a PV extension of a difference field k and e0, . . . , et−1 ∈ R as in Proposi-
tion 4.15. Let φ ∈ Galσ(R/k). Show that φ permutes the e0, . . . , et−1.

5.2 Let (k, σ) be a difference field and u ∈ k. Show that if σs(u) = u for some s ≥ 1,
then u is algebraic over kσ. Hint: The orbit of u under σ is finite. What can you say
about the symmetric functions of this orbit?

32



5.3 Let R be a commutative ring.
(i) Show that any non-zerodivisor is invertible in Q(R).
(ii) Show that the map r 7→ (r, 1) is an embedding of R into Q(R).

5.4 Let (R, σ) be a simple difference ring and Q(R) its total quotient ring. Show that
Q(R)σ ⊂ R and so Q(R)σ = Rσ.

5.5 Let R be a PV extension of a difference field k and write R = ⊕t−1
i=1Ri as in Proposi-

tion 4.15. Show that Q(R) = ⊕t−1
i=0Q(Ri).

6 Computational Questions

6.1 Calculating PV groups and Algebraic Relations Among So-
lutions of Linear Difference Equations

In this section, we consider two questions:

• Given a linear difference equation, can one calculate its PV group?

• Given a linear difference equation, can one calculate the algebraic relations among
its solutions?

We note that the first question has been recently answered positively for linear difference
equations over Q(x) by Ruyong Feng [10]. I will not discuss his solution but rather discuss
these questions for linear difference equations over a constant difference field and then
discuss how these questions are algorithmically related.

We begin by considering these questions for equations with constant coefficients, that is,
linear difference equations over the difference field (C, σ) where C is an algebraically closed
field (in which we can effectively do the algebraic operations and factor polynomials) and
σ= identity.

Let

σ(Y ) = AY (5)

be a linear difference equation over C, where A ∈ GLn(C). We shall construct a matrix
Z ∈ GLn(SC) such that σ(Z) = AZ but before we do, we will make some remarks about
matrices with entries in SC . We can identify such a matrix with a sequence of matrices
((zi,j(0)), (zi,j(1)), . . . , (zi,j(m)), . . .). Conversely, one can identify a sequence of matrices
with entries in C with a matrix with entries in SC , that is the matrix whose i, j entry is
the sequence of i, j entries of the sequence of matrices. It will be convenient to frequently
go back and forth between these two representations. Note that (zi,j) ∈ GLn(SC) if and
only if det(zi,j(m)) 6= 0 for m >> 0.
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Let In be the n× n identity matrix. I now claim that the sequence of matrices

Z = (In, A,A
2, . . .)

(or the matrix of sequences associated to this) satisfies σ(Z) = AZ. This follows from the
fact that σ((In, A,A

2, . . .)) = (A,A2, . . . ) = A(In, A,A
2, . . .). Corollary 4.19 implies that

R = C[Z, 1/ det(Z)] is the PV extension of C for equation (5).

I now describe the PV group G of this equation. First note that the automorphism σ of R
is in G. This is because σ is an automorphism that is the identity on C (here we use the
assumption from the beginning that σ is trivial on C) and σ obviously commutes with σ.

Now let us compute [σ]Z . We have

σ(Z) = AZ = A(In, A,A
2, A3, · · · ) = (A,A2, A3, . . . ) = ZA

so
[σ]Z = A.

I now claim that G is the Zariski closure of the group generated by A, that is, G = 〈A〉.
First note that the set of elements in Q(R) left fixed by A is precisely the constants C. The
same therefore holds for 〈A〉 and therefore for 〈A〉. Therefore the Galois correspondence
tells us that G = 〈A〉.

The PV ring R = C[Z, 1/ det(Z)] may be written as R = C[Y, 1/ det(Y )]/J where Y is an
n× n matrix of variables and J is a maximal σ-ideal. We now describe J . We have

J = {P ∈ C[Y, 1/ det(Y )] | P (Z, 1/ det(Z)) = 0}
= {P ∈ C[Y, 1/ det(Y )] | P ((In, A,A

2, . . .)) = 0}
= {P ∈ C[Y, 1/ det(Y )] | (P (In), P (A), P (A2), . . .)) = 0}
= {P ∈ C[Y, 1/ det(Y )] | P (Am) = 0 for m ≥ 0}

Therefore V (J) is the Zariski closure of {Am | m ≥ 0}. Since this latter set is closed
under multiplication and contains In, V (J) is a linear algebraic group (cf. Problem 3.4).
It therefore is the Zariski closure of 〈A〉. Since J is radical, we have that J is the defining
ideal of G. Note that J is the ideal of relations among the entries of Z and 1/ det(Z) so
J ∩ C[Y ] is the ideal of relations among the entries of Z. We therefore have

Proposition 6.1 Let C be an algebraically closed field and A ∈ GLn(C). Let Z ∈ GLn(SC)
satisfy Z(0) = In and σ(Z) = AZ. Let R be the associated PV extension of C and G be
the image of Galσ(R/C) in GLn(C) with respect to Z.

1. G is the Zariski closure of the group generated by A.

2. If R = C[Z, 1/det(Z)] = C[Y, 1/ det(Y )/J , then J = IC(G).

34



In particular, the ideal of algebraic relations among the entries of Z comes from IC(G).
This leads to the following algorithm. Note that any U(0) ∈ GLn(C) determines a unique
solution U = (U(0), AU(0), A2U(0), . . .) ∈ GLn(CS) of σ(Y ) = AY .

Input: A,U(0) ∈ GLn(C).

Output: A basis of I = {P ∈ C[X, 1/ det(X) | P (U) = 0}.

Step1: Use the algorithm of [7] to find a basis of J = IC(〈A〉). This later algorithm will
find the defining ideal of the Zariski closure of a group generated by a finite set of matrices.

Step 2: Let I be the ideal one gets when one replaces X = (Xi,j) with XU(0)−1 in the
polynomials in J .

Since J is the defining ideal of Z, one sees that I is the defining ideal of J .

Example 6.2 Let us find the ideal of relations among the Fibonacci numbers F = (0, 1, 1, 2, 3, 5, . . .).
We let C = C. Note that F satisfies σ2(F )−σ(F )−F = 0. The associated matrix equation
is

σ

(
F

σ(F )

)
= A

(
F

σ(F )

)
where A =

(
0 1
1 1

)
.

For our matrix U we will take

U =

(
F σ(F )

σ(F ) σ2(F )

)
where U(0) =

(
0 1
1 1

)
.

The fact that A = U(0) in this example is a coincidence. We now wish to find the Zariski
closure of the group generated by A. We note that A = QBQ−1 where

Q =

(
1
2

+ 1
10

√
5 1

2
− 1

10

√
5

−
√

5
5

√
5

5

)
and B =

(
1
2
− 1

2

√
5 0

0 1
2

+ 1
2

√
5

)
.

Therefore, to find the defining ideal J of 〈A〉, it suffices to find the defining ideal of 〈B〉 and
then make a change of variables. The entries of B satisfy X2,1 = X1,2 = (X1,1X2,2)2−1 = 0.
The algorithm of [7] verifies that these are the only relations among the entries of the
elements of 〈B〉 and so form a basis for the defining ideal of this group . The substitution
(Yi,j) := Q−1(Xi,j)Q yields a basis of the ideal J of 〈A〉 (you can use maple to find these
equations; they are not complicated, just unpleasant to view).

One now makes the substitution (Xi,j) := (Yi,j)U(0)−1 to find the ideal I above. The result
is

I = 〈Y1,2 − Y2,1, Y2,2 − Y1,2 − Y1,1, (Y1,1Y2,2 − Y 2
1,2)2 − 1〉.

This gives a basis of the algebraic relations among the entries of U and implies that ALL
algebraic relations among F (n), F (n+ 1), F (n+ 2) are a result of

F (n+ 2)− F (n+ 1)− F (n) = 0 and (F (n)F (n+ 2)− F (n+ 1)2)2 = 1.
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Example 6.3 We can also calculate the relations among solutions of several difference
equations. For example, consider the sequence of Fibonacci numbers F = (F (n)) and the
sequence S(n) = (−1)n. In matrix terms, one has the following difference equation

σ

 F
σ(F )
S

 = A

 F
σ(F )
S

 where A =

 0 1 0
1 1 0
0 0 −1

 .

For our matrix U we take

U =

 F σ(F ) 0
σ(F ) σ2(F ) 0

0 0 S

 and U(0) =

 0 1 0
1 1 0
0 0 1

 .

The matrix A is conjugate to B, where

B =

 1
2
− 1

2

√
5 0 0

0 1
2

+ 1
2

√
5 0

0 0 −1

 .

and the defining ideal of 〈B〉 is generated by

{X1,2, X1,3, X2,1, X2,3, X3,1, X3,2, (X1,1X2,2)2 − 1, X2
3,3 − 1}.

Proceeding as above we get that the ideal of relations among F (n), F (n+ 1), F (n+ 2) and
(−1)n is generated by

F (n+ 1)− F (n+ 1)− F (n) and F (n)F (n+ 2)− F (n+ 1)2 − (−1)n.

The equation F (n)F (n+ 2)− F (n+ 1)2 = (−1)n is known as Cassini’s Identity.

We note that Kauers and Zimmerman [15] also gave an algorithm to calculate the ideal
of relations among the solutions of a linear difference equation with constant coefficients.
Their algorithm is based on the fact that one can explicitly write down solutions of such an
equation. The calculations involved in their algorithm and the algorithm for computing the
Zariski closure of finitely generated matrix groups in [7] are very similar. The advantage
of the above algorithm is that the general philosophy can possibly yield an algorithm for
linear difference equations over other fields. We describe this approach now. We begin by
formally restating the two questions posed at the beginning of this section and will show
how they are related.

Let C be as above and (C(x), σ) be a difference field with C as above and σ(x) = x + 1.
Let A ∈ GLn(C(x)) and assume the entries of A are defined and det(A) 6= 0 for all x ≥ N .
Given some ZN ∈ GLn(C), on can define a solution Z ∈ GLn(SC) of σ(Y ) = AY as
follows. Let Z(i) = 0 for i < N , Z(N) = ZN and for i > 0 define Z(N + i) inductively as
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Z(N + i) = A(N + i− 1)Z(N + i− 1). Note that any other solutions of σ(Y ) = AY such
that Y (N) = ZN satisfies Y (N + i) = Z(N + i) for all i > 0. Consider the following two
problems:

Problem 1: Given ZN ∈ GLn(C), let Z be the solution of σY = AY with Z(N) = ZN .
Find the defining ideal I of the matrix representation (with respect to Z) of the PV group
of this equation.

Problem 2: For Z as in Problem 1, find a basis of the ideal J of algebraic relations among
the entries of Z.

Proposition 6.4 There is a recursive procedure to reduce Problem 1 to Problem 2 and vice
versa.

Proof. Assume we can solve Problem 2. The PV group of the difference equation is
represented by the group

G = {g ∈ GLn(C) | the map X 7→ Xg leaves the ideal J stable.}

Elimination (using Gröbner basis techniques [5] for example) allows one to find a basis for
the ideal I defining G.

Assume we can solve Problem 1 and can find a basis of I ⊂ C(x)[X, 1/ det(X)]. We
know there exists a B ∈ GLn(C(x)) such that σ(B)AB−1 ∈ G(C(x)) = V (I). Since
C(x) is countable we can find such a B by, at worst listing all possibilities and checking
the condition σ(B)AB−1 ∈ G(C(x)). Once we have found one B, replacing X in the
polynomials of I by BY will yield the ideal J .

The effective method that allows one to go from a solution of Problem 1 to Problem 2 is
certainly not efficient but at least one sees the connection between the two problems; it
would be interesting to find a more efficient method. For difference equations of order at
most 2, Problem 1 has been solved by Hendriks in [12] and, as mentioned above, in general
by Feng [10].

6.2 Liouvillian Sequences

In this section we will discuss the problem of expressing sequences in “closed form”. Recall
that we call a polynomial equation solvable if the roots can be expressed in terms of radicals.
To be more precise, let p(X) ∈ k[X], k a field. One says that p(X) is solvable in terms of
radicals if its splitting field K lies in a tower of fields k = K0 ⊂ K1 ⊂ . . . ⊂ Km, K ⊂ Km

where for each i, Ki+1 = Ki(ζi), ζ
ni
i ∈ Ki. A classical result is that p(X) is solvable in

terms of radicals if and only if its Galois group is solvable.

One has a corresponding result for linear differential equations. If k is a differential field
and L(y) = 0 is a linear differential equation of order n with coefficients in k, one says that
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L(y) = 0 is solvable in terms of liouvillian functions if L(y) = 0 has n solutions, linearly
independent over constants, that lie in a tower of differential fields k = K0 ⊂ K1 ⊂ . . . ⊂ Kn

where for each i, Ki+1 = Ki(ζi) and either

1. ζ ′i ∈ Ki (i.e. ζi =
∫
ηi, ηi ∈ Ki), or

2. ζ ′i/ζi ∈ Ki (i.e. ζi = exp(
∫
ηi), ηi ∈ Ki), or

3. ζi is algebraic over Ki.

There is a Galois theory for linear differential equations that associates a linear algebraic
group to such an equation [6],[16],[22],[28]. One knows that L(y) = 0 is solvable if and only
the identity component if its Galois group is solvable.

Turning to linear difference equations, what corresponds to integrals and exponentiation?
The following table gives an answer

Differential Equations Difference Equations

meromorphic functions y(x) sequences y = (y(0), y(1), . . .)

integrals z =
∫
y(x)⇔ z′ = a sums z(n) =

∑n−1
i=0 y(i)⇔ σ(z)− z = y

exponentials z = exp(
∫
y(x))⇔ z′ = yz products z(n) =

∏n−1
i=0 y(i)⇔ σ(z) = yz

algebraic functions interlacing

All of this motivates the following definition

Definition 6.5 The Ring of Liouvillian Sequences LS in S is the smallest subring of
SC satisfying

1. C(x) ⊂ LS,

2. a ∈ LS ⇔ σ(a) ∈ LS,

3. if a ∈ C(x) and b ∈ S satisfies σ(b) = ab then b ∈ LS,

4. if a ∈ LS and b ∈ S satisfies σ(b)− b = a, then b ∈ LS, and

5. if a1, . . . , am ∈ LS then the interlacing of these sequences is in LS.

Examples 6.6 1) Example 2 of the introduction is an example of a linear difference equa-
tion all of whose solutions lie in LS

2) The solution

u(n) =

{
n if n is even

1 if n is odd
.
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of
(n2 + n− 1)u(n+ 2) + 2u(n+ 1)− (n2 + 3n+ 1)u(n) = 0

is an example of an interlacing of rational sequences and lies in LS.

3) (Example 1, p. 457, [12]) The solutions of

a(n+ 2) + na(n+ 1) + na(n) = 0.

are of the form

a(n) = c1u(n) + c2v(n), where c1 and c2 are constants and

u(n) = (−1)n(n− 2)

v(n) = (−1)n

(
−(n− 1)!

n− 2
+ (n− 2)

n−1∑
k=3

(k − 1)!
k3 − 6k2 + 9k − 3

(k − 1)2(k − 2)2

)

and so lie in LS.

This definition is the definition given in [13]. One would like to replace the phrase “a ∈
C(x)” in condition 3 of the above definition with the phrase “a ∈ LS”. This former
phrase was needed because the Galois theory used to prove the results below in [13] (and
the one developed in [27]) is a Galois theory of difference equations over difference fields.
Presumably the Galois theory of difference equations over difference rings developed in [1]
and [36] allows one to use the stronger phrase. Nonetheless, one has the following results.

Theorem 6.7 [13] Let a ∈ SC. The element a ∈ LS if and only if a satisfies a linear
difference equation over C(x) whose PV group is solvable.

Note that Proposition 5.6 states that if G is a PV group over C(x), then G/G0 is cyclic so
G is solvable if and only if G0 is solvable. For the next result we need a definition

Definition 6.8 An invertible sequence y ∈ SC is said to be hypergeometric if σ(y) = ay
for some a ∈ C(x)

Theorem 6.9 [13] Let L(y) = 0 be a linear difference equation of order n with coefficients
in C(x). Then L(y) = 0 has a solution in LS if and only if L(y) = 0 has a solution in S
that is the interlacing of m hypergeometric sequences, where 1 ≤ m ≤ n.

Proof. I will only give a brief outline of the proof of this result; just enough to show
where the Lie-Kolchin Theorem is used. Assume that L(y) = 0 has a solution a in LS.
By Theorem 6.7 one knows that a satisfies a linear difference equation whose PV group
is solvable. As a first step, it can be shown that one can reduce to the case where the
PV group G of L(y) is solvable. Next, let R be the associated PV extension and write
R = ⊕t−1

i=0Ri = eiR as in Proposition 5.6. Let K = Q(R) = ⊕t−1
i=0Q(Ri). One can show that

KG0
= ⊕t−1

i=0eiC(x).
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We now apply the Lie-Kolchin Theorem, Theorem 3.12. This theorem asserts that one can
conjugate the group G0 so that all its elements are in upper triangular form. In particular,
there exists a solution v of L(y) = 0 such that for each φ ∈ G0 there exists a cφ ∈ C such
that φ(v) = cφv. Let vi = eiv. I will show that each vi is hypergeometric with respect to
σt. If vi = 0, vi is clearly hypergeometric. Assume vi 6= 0. Since Ri is a domain, vi is
invertible in Q(Ri). A calculation shows that σt(vi)/vi is left fixed by every element of G0

and so lies in eiC(x).

Define new sequences ui by ui(n) = vi(tn + i). For each vi there exists an fi ∈ C(x) such
that σt(vi) = fivi. Let gi(x) = fi(tx+ i). We then have σ(ui) = giui and v is the interlacing
of the t hypergeometric ui.

The value of t we have found in the above argument may be large and lie outside the bounds
claimed by the Theorem. Nonetheless, a refinement of the above argument allows one to
produce m hypergeometric sequences, where 1 ≤ m ≤ n such that v is the interlacing of
these sequences. I refer to [13] for the details.

The above theorem allows us to give a procedure to decide if a linear difference equation
L(y) = 0 of order n has solutions in LS. For each m, 1 ≤ m ≤ n one proceeds as follows.

1. Construct linear difference equations Lm,i(y) = 0, i = 0, . . . ,m− 1, with the property
that if z is a solution of L(y) = 0 and is an interlacing of m sequences z0, . . . , zm−1 then
each zi satisfies Lm,i(zi) = 0. One does this by using L(y) = 0 to write each σim(y),
i = 0, . . . n as a C(x)-linear combination of σj(y), j = 0, . . . , n − 1 and then using
elimination to get a C(x)-linear combination of the σim(y), i = 0, . . . n that equals
zero. One then has an operator P (σ) of order at most n such that P (σm)(y) = 0
for any solution y of L(y) = 0. For each i = 0, . . . ,m, replace x by mx + i in the
coefficients of P (σ) yielding an operator Lm,i(σ). The equations Lm,i(σ)(y) = 0 have
the desired properties.

Example 6.10 Let L(y) = σ2(y) − (x + 1)y and m = 2. In this case the first step
is rather trivial since the original equation already gives a relation between σ2(y) and
y. Therefore P (σ) = σ − (x+ 1). One then has that

L2,0(y) = σ(y)− (2x+ 1)y

L2,1(y) = σ(y)− (2x+ 2)y.

Note that the sequence (1, 1, 1, 2, 3, 4 · 2, 5 · 3, 6 · 4 · 3, . . .) satisfies L(y) = 0 while the
sequence (1, 1, 3, 3 · 5, . . .) satisfies L2,0(y) = 0 and the sequence (1, 2, 4 · 2, 6 · 4 · 2, . . .)
satisfies L2,1(y) = 0.

2. Use the algorithm of Petkovsek ([25, 26]) to find all hypergeometric solutions of the
Lm,i(y) = 0 and test whether interlacings of m of these satisfy L(y) = 0.
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Using this and a variation of parameters argument, one can find a C-basis of L(y) = 0 (see
Lemma 5.4, [13]).

I will not describe more fully the above algorithm here but refer the reader to [13]. Suffice it
to say that it depends heavily on a procedure originally due to Petkovsek ([25, 26]) which,
given a linear differential equation L(y) over C(x), finds all hypergeometric solutions of
L(y) = 0. I will describe this latter algorithm in the context of second order equations and
closely follow the presentation given in [12] and sketched in ([27], Chapter 2.3). A key idea
in this algorithm is to reduce this question to questions of a local nature, that is, behavior
at a point. When considering the field C(x), the function field of the sphere P1(C), with
the shift σ(x) = x + 1, the only point that is left fixed is the point at infinity. We will
therefore consider the field of Laurent series C((z)) where z = 1/x. Note that σ acts on
this field via σ(z) = z

1+z
.

Consider a second order linear difference equation

σ2(y) + aσ(y) + by = 0, a, b ∈ C(x). (6)

If y is a putative hypergeometric solution satisfying σ(y) = uy, then substitution shows
that u satisfies the associated Riccati equation

uσ(u) + au+ b = 0. (7)

We wish to determine possible u ∈ C(x) that satisfy this latter equation. Our first step
is to determine the possible initial terms of the expansion of u in C((z)), where z = 1

x
.

In [12], the author shows that the first two terms will suffice for later computations and
that there are only finitely many possibilities for these.

Example 6.11 We will consider the equation presented in the second example of the In-
troduction.

L(y) = y(x+ 2)− (2x+ 5)y(x+ 1) + (2x+ 2)y(x) = 0 (8)

whose associated Riccati equation is

uσ(u)− (2x+ 5)u+ 2x+ 2 = 0.

If we write u = anz
n + an+1z

n+1 + h.o.t, were h.o.t means “higher order terms”, we then
have

(anz
n + an+1z

n+1 + h.o.t)(anz
n + (an+1 − nan)zn+1 + h.o.t)

−(
2

z
+ 5)(anz

n + an+1z
n+1 + h.o.t) +

2

z
+ 2 = 0

The terms of lowest order must cancel so either n − 1 = −1 or n − 1 = 2n. Collecting
terms corresponding to the two lowest powers of z and equating these to zero, one sees that
assuming n− 1 = −1 leads to a contradiction while the assumption n− 1 = 2n implies that
n = −1, a−1 = 2, a0 = 2.
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For the next step, clear denominators in equation (6) and write it as

Fσ2(y) +Gσ(y) +Hy = 0, F,G,H ∈ C[x], gcd(F,G,H) = 1. (9)

For a putative hypergeometric solution y with σ(y) = uy, we write u = A
B

with A,B ∈
C[x], gcd(A,B) = 1. Let R = gcd(σ−1(A), B). We then can write

u = c
σ(R)

R

p

q

where c ∈ C, R, p, q are monic polynomials, gcd(p, σ(q)) = 1 and gcd(σ(R)p,Rq) = 1.
Substituting into the Riccati equation associated with equation (9), we have

c2Fσ2(R)σ(p)p+ cGσ(R)σ(q)p+HRσ(q)q = 0. (10)

One sees that p divides H and q divides σ−1(F ). Therefore there are only a finite number
of possible choices for these polynomials. Fix some p, q satisfying these conditions. We
shall now determine possible polynomials R.

If R = xe + be−1x
e−1 + . . .+ b0, we then have that σ(R)

R
= 1 + ez + h.o.t. In addition

1 + ez + h.o.t =
σ(R)

R
=
uq

cp
.

This allows us to determine a value of e. If this value of e is nonnegative, we let R =
xe + be−1x

e−1 + . . .+ b0, with the bi variables. Equating powers of x in equation (10), yields
a system of linear equations for the bi that give possible solutions of the Riccati equation
for this particular choice of p, q. Doing this for all possible choices, yields all possible u.

Example 6.11 (continued)In this case, F = 1, G = −(2x+5) and H = 2x+2. Therefore
q = 1 and p divides 2x+ 2 and so p = 1 or p = x+ 1.

Case 1: p = 1. In this case we have

1 + ez + h.o.t =
σ(R)

R
=
uq

cp
=

1

c
(
2

z
+ 2 + h.o.t).

This leads to a contradiction.

Case 2: p = x+ 1. In this case we have

1 + ez + h.o.t =
σ(R)

R
=
uq

cp
=

1

c
(

2
z

+ 2 + h.o.t
1
z

+ 1
) =

2

c
(1− 0z + h.o.t)

Therefore, c = 2 and e = 0. We then have that R = 1 so u = 2(x+ 1).
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We can conclude that the only hypergeometric solutions of equation (8) are solutions of

σ(y) = 2(x+ 1)y,

that is, constant multiples of
y(n) = 2nn!.

For second order linear equations, when we know a hypergeometric solution, we can find
another solution using “ variation of parameters”.

Example 6.11 (continued)Consider the noncommutative ring of difference operators
C(x)[σ] where σ · f = σ(f) · σ. We may write the operator associated with equation (8) as

σ2 − (2x+ 5)σ + (2x+ 2) = (σ − 1) · (σ − 2(x+ 1)).

Note that y = 1 is a solution of σ(y) − y = 0. Therefore to find another solution of
equation (8), we must find a solution of σ(y)−2(x+1)y = 1. Let y = zy1 where y1 satisfies
σ(y1)− 2(x+ 1)y1 = 0. We then have

σ(z)− z =
1

2(x+ 1)y1

,

that is,

z(n+ 1)− z(n) =
1

2(n+ 1)2nn!
=

1

2n+1(n+ 1)!
.

Therefore,

z(n) =
n∑

m=0

1

2mm!
and so y = 2nn!

n∑
m=0

1

2mm!
.

This verifies the form of solutions given in example 2 of the introduction.

7 Hints and Answers to Problems

7.1 Problems for Chapter 2

2.1 Let k = Q and for each i ∈ Z, let Vi = {i}, Each Vi is k-closed, but ∪i∈ZVi = Z is
not k-closed. The reason for this is that if a polynomial p(x) ∈ Q[x] vanishes on all
Vi then it must be identically 0 and so would vanish everywhere.

2.2 From the definition of k-closed, one sees that a set O ⊂ k̄m is open if there ex-
ists a set of polynomials {fi}i∈I ⊂ k[X1, . . . , xm] such that O = {v ∈ k̄m |fi(v) 6=
0 for some i ∈ I}. We say the {fi}i∈I defines O. Let O1 be defined by {fi}i∈I and
O2 be defined by {gj}j∈J . Since they are both nonempty, some fi and some gj are
not the zero polynomial. Since k̄ is infinite, there is an element v ∈ k̄m such that
fi · gj(v) 6= 0. This v belongs to O1 ∩O2.
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2.3 Let V be a k-variety, so V = V (I) for some ideal I ⊂ k[X1, . . . , Xm]. We begin by
showing V ⊂ V (Ik(V )). If v ∈ V , then all the elements of Ik(V ) vanish at v (by
the definition of Ik(V ).). Therefore V ⊂ V (Ik(V )). Now assume that v ∈ V (Ik(V )).
Then any polynomial that vanishes on all of V must vanish at v. But the elements of
I vanish on the elements of V (this is how V is defined), so the elements of I vanish
at v. So v ∈ V (I) = V .

2.4 (ii) Let V1 ⊃ V2 ⊃ . . .. We then have Ik(V1) ⊂ Ik(V2) ⊂ . . .. Therefore by part (i),
we have Ik(Vs) = Ik(Vs+1) = . . . for some s. From Problem 2.3, we then have that
Vs = V (Ik(Vs)) = Vs+1 = V (Ik(Vs+1)) = . . .
(iii) Let V1 ∈ {Vi}i∈I . If V1 is not minimal there is a V2 ∈ {Vi}i∈I such that V1 ) V2.
By part (ii) we cannot continue indefinitely so after a finite number of steps we find
a Vj ∈ {Vi}i∈I which is minimal.

2.5 (i) This part of Corollary 2.18 follows from Corollary 2.16 in the following way. We
have

V (I) = V1 ∪ . . . ∪ Vn
as in Corollary 2.16. We than have that Ik(V (I)) = Ik(V1) ∩ . . . ∩ Ik(Vn). Since I
is already radical, Ik(V (I)) = I by the Hilbert Nullstellensatz. Lemma 2.13 implies
that each of the Ik(Vj) are prime. The rest of (i) follows in a similar way.
(ii) Let R be a ring finitely generated over a field k. We may write R = k[x1, . . . , xm].
Let k[X1, . . . , Xm] be the polynomial ring in m variables and Φ : k[X1, . . . , Xm] →
k[x1, . . . , xm] be the homomorphism defined by Φ(Xi) = xi. If I is a radical ideal of
R, then Φ−1(I) is a radical ideal of k[X1, . . . , Xm]. Apply part (i) to this ideal and
write Φ−1(I) = P1 ∩ . . . ∩ Pn. We then have I = Φ(P1) ∩ · · · ∩ Φ(Pn).

2.6 As mentioned above, k-open sets in k̄m are of the form ∪i∈I{v ∈ k̄m | pi(v) 6= 0}
where {pi}i∈I is a set of polynomials in k[X1, . . . , Xm]. Therefore it is enough to
show that if F : V → W is a morphism, then F−1(W ∩ {w ∈ k̄m | p(w) 6= 0}) is an
open subset of V . Let F := (f1, . . . , fm). We then have that

F−1(W ∩ {w ∈ k̄m | p(w) 6= 0}) = {v ∈ k̄n | p(f1(v), . . . , fm(v)) 6= 0}.

2.7 The coordinate ring of V is k[X1, . . . , Xm]/Ik(V ). This is an integral domain if and
only if Ik(V ) is a prime ideal. On the other hand, Ik(V ) is a prime ideal if and only
if V is k-irreducible by Lemma 2.13.

7.2 Problems for Chapter 3

3.1 Let g ∈ X and assume e ∈ X. The map x 7→ gx is a homeomorphism of G to G that
takes X into X. Therefore gX is a closed subset of X. Iterating the map, we have
X ⊃ gX ⊃ g2X ⊃ . . .. We cannot have an infinite descending chain of such subsets,
so for some s, we have gsX = gs+1X. Since e ∈ X, we have gse = gs+1a for some
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a ∈ X. Since G is a group, this implies that e = ga, so X is closed under inverse and
must be a group.
One can modify this argument when we do not assume e ∈ X. As above one can show
gsX = gs+1X for some s. This implies that there is an a ∈ X such that gs+1a = gsg.
Therefore a = e ∈ X. Now use the first part of this problem.

3.2 Let h ∈ N . the map ch : G → N defined by g 7→ gxg−1 is a continuous map from a
connected set to a finite set. Each point of a finite set is closed (v = (v1, . . . , vm) is
the unique zero of {X1 − v1, . . . , Xm − vm}) so each element of a finite set is one of
the components of that set. The image of G under the map ch is irreducible so must
equal one of these points. Since ch(e) = e, we have ch(G) = e. This means ghg−1 = h
for all g ∈ G so h ∈ Z(G).

3.3 This is a long computation. One must show each of these sets is a group, normal
in the previous set such that the quotients are abelian. To show the quotients are
abelian, one should show that if g, h are in one set then ghg−1h−1 is in the next set.
Again this is a computation.

3.4 (a) If Am = e then A satisfies Xm−1 = 0. If 1 is the only eigenvalue, then the minimal
polynomial must be of the form (X − 1)t for some t. The minimal polynomial will
divide Xm − 1 and this can only happen if t = 1, so A is the identity matrix.
(b) If g1, g2 ∈ Tn, the group of upper triangular matrices with nonzero elements on
the diagonal, then the diagonal elements of g1g2g

−1
1 g−1

2 must all equal 1. If g1 and g2

are furthermore in a finite group then g1g2g
−1
1 g−1

2 has finite order. Therefore by (a),
we have g1 and g2 commute.
(c) Think of each element of A4 as permuting the basis elements {e1, . . . , e4} of a
four-dimensional vector space. This gives a representation of A4 as 4 × 4 matrices.
The subgroup H = {e, (123)(4), (132)(4)} of A4 is abelian and A4/H has order 4 and
so must be abelian as well. Therefore A4 is solvable but nonabelian (check).

3.5 (a) Let V ∈ GL1(k̄) = k̄∗ be a k-torsor. Since G has two elements, the definition
of k-torsor implies that V has two elements. It is irreducible and the zero set of
polynomials in one variable so we an conclude that V = V (X2 + bX + c) where
X2 + bX + c is irreducible over k. The ring Ok(V ) = k[X]/〈X2 + bX + c〉 = k(

√
a)

for some a. Since X2 + bX + c is irreducible over k, a is not a square.
(b) If a = bc2, then b is not a square and k(

√
b) = k(

√
a) . Conversely if k(

√
b) =

k(
√
a), then there exist c, d ∈ k such that

√
a = c + d

√
b. This implies that a =

c2 + d2b + 2cd
√
b and so cd = 0. If d = 0, then a would be a square, so c = 0 and

a = d2b.
(c) The torsors V1 and V2 are isomorphic if and only if their coordinate rings are
isomorphic (in such a way that the isomorphism commutes with the action of G on
these rings). The rest follows from (b).
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7.3 Problems for Chapter 4

4.1 If σn = identity, then for any a ∈ k, the coefficients of the polynomial

Pa(X) =
n−1∏
i=0

(X − σi(a))

are constant. Now use the fact that the field of constants is algebraically closed.

4.2 One easily checks that Rσ is a ring. Assume R is simple and let c ∈ Rσ, c 6= 0. One
shows that the ideal 〈c〉 is a σ-ideal. Since c 6= 0, we must have 1 ∈ 〈c〉 and so there
exists an element b ∈ R such that bc = 1 Since σ(b)σ(c) = σ(b)c = 1 = bc, we have
σ(b) = b.

4.3 Since e0 + . . .+et−1 = 1 some ei has a 1 in the first place. After renumbering, assume
this is e0. Let j be the smallest positive integer such that e0(j) = 1 (such an integer
exists since σt(e0) = e0 so e0(t) = 1). If j < t, then ej = σj(e0) has 1 in the jth place.
This would contradict the fact that e0ej = 0. Therefore e0(0) = 1 and e0(i) = 0 for
1 < i < t. Since e0 = σt(e0), we see that e0 satisfies the conclusion of the problem.
Since ei = σi(e0), the other ei satisfy the conclusion as well.

4.4 Let R = k[Z, 1/ det(Z)]. Since σ(Z) = AZ, we have

σt(Z) = BZ where B = Aσ(A) · · ·σt−1(Z).

We have Ri = k[eiZ, 1/ det(eiZ)] and σt(eiZ) = B(eiZ).

7.4 Problems for Chapter 5

5.1 Let R = R0 ⊕ . . . ⊕ Rt−1 where Ri = eiR is an integral domain. For any r ∈ R we
can write r = (r0, . . . , rt−1), ri ∈ Ri. Note that if r satisfies r2 = r, then each ri must
be either 0 or 1 ∈ Ri, since these rings are domains. Let fi = φ(ri). We therefore
have the only entries of fi are 0 or 1.

For r ∈ R, define supp(r) = {i | ri 6= 0}. Note that supp(ei) = {i}. We have the
following observations

(i) If r 6= 0 then supp(r) 6= ∅.
(ii) If r, s ∈ R and rs = 0 then supp(r) ∩ supp(s) = ∅.

Since eiej = 0, we have fifj = 0. Therefore {supp(fi)}t−1
i=0 is a partition of {0, . . . , t−1}

into n disjoint nonempty sets. This implies that each supp(fi) is a singleton. We have
already seen that the nonzero entry must be 1 so the fi are just a permutation of the
ei.
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5.2 Let ui = σi(u), i = 0, . . . , s − 1. The set {ui}s−1
i=0 is stable under the action of σ.

Therefore any symmetric function of these elements is left fixed by σ. This means
that the coefficients of

p(X) =
s−1∏
i=0

(X − ui) = Xs − (u0 + . . .+ us−1)Xs−1 + . . .+ (−1)s(
∏

ui)

are left fixed by σ and so lie in kσ. Therefore u is algebraic over kσ.

5.3 (i) Note that (r, s)(u, v) = (ru, sv) = (0, 1) if and only if ru = 0. therefore, (r, s) is a
non-zerodivisor if and only if r is a non-zerodivisor. This implies that if (r, s) is not
a zerodivisor, then (s, r) ∈ Q(R).
(ii) It is enough to show that if (r, 1) ∼ (0, 1) then r = 0. This follows from r·1−1·0 =
0.

5.4 Let (r, s) ∈ Q(R) and assume that σ((r, s)) = (r, s). Let I = {u ∈ R | (u, 1)(r, s) ∈ R}
where we identify R as in 5.3(ii). One sees that I is a difference ideal containing s so
must be all of R. Therefore 1 ∈ I and this implies that (r, s) ∈ R.

5.5 Note that since each Ri is a domain, Q(Ri) is the usual quotient field. An element
s = (s0, . . . , st−1) ∈ R is a non-zerodivisor if and only if all the si are nonzero.
Therefore we may make the following identification:

Q(R) = {(r, s) | r = (r0, . . . , rt−1), s = (s0, . . . , st−1), all the si 6= 0}
= {((r0, s0), . . . , (rt−1, st−1)) | all the si 6= 0}
= ⊕t−1

i=0Q(Ri)
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[2] Benali Benzaghou. Algèbres de Hadamard. Bull. Soc. Math. France, 98:209–252, 1970.
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Boston Inc., Boston, MA, 1985. Translated from the German by Michael Ackerman,
With a preface by David Mumford.

[19] Serge Lang. Algebra. Addison Wesley, New York, 3rd edition, 1993.

[20] Richard G. Larson and Earl J. Taft. The algebraic structure of linearly recursive
sequences under Hadamard product. Israel J. Math., 72(1-2):118–132, 1990. Hopf
algebras.

48



[21] Andy R. Magid. Finite generation of class groups of rings of invariants. Proc. Amer.
Math. Soc., 60:45–48 (1977), 1976.

[22] Andy R. Magid. Lectures on Differential Galois Theory. University Lecture Series.
American Mathematical Society, 1994. Second Edition.

[23] Pierre Nguyen. Hypertranscedance de fonctions de Mahler du premier ordre. C. R.
Math. Acad. Sci. Paris, 349(17-18):943–946, 2011.
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