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We are mainly following [2] and [1].

1. Absolute values on number fields and the product formula

This is extracted from [2, Section B1] and [1, Sections 1.2-1.4].
The traditional way to describe the size of an algebraic number is through the use of

absolute values.
Recall: algebraic number, number field, Galois closure, Galois group. Examples:

Q(i,
√

3), Q(α) with α3 + α2 − 1 = 0 that it is not Galois, you need to add
√
−23 to get

the Galois closure.

Definition 1.1. An absolute value on a field K is a function | · |: K → [0,∞) such that

i) | x |= 0 if and only if x = 0 (non degenerate)
ii) | xy |=| x || y | (multiplicative)
iii) | x+ y |≤| x | + | y | (triangle inequality)

It is said to be nonarchimedean if it satisfies:

iv) | x+ y |≤ max{| x |, | y |} (ultrametric inequality)

Example 1.2. Let us consider K = Q:

• Archimedean absolute value on Q: | x |∞= max{x,−x}.
• Nonarchimedean p-adic absolute value on Q: x = pordp(x) a

b
with a, b ∈ Z and

p - ab. If x = 0 we set ordp(x) =∞. | x |p= p− ordp(x).

The number x is p-adically small if it is divisible by a large power of p. ordp is the p-adic
valuation on Q.

Definition 1.3. Two absolute values are equivalent if they define the same topology, i.e.,
if there exists s ∈ R>0 such that | x |2=| x |s1.

Definition 1.4. MK is the set of absolute values up to equivalence, M∞
K the archimedean

ones, and M0
K the nonarchimedean ones.
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Given an absolute value | · |∈MK we can define a valuation (or place) v(x) = − log | x |
and we write | · | as | · |v and even v ∈MK .

Definition 1.5. Let K ′/K be a field extension. Let v ∈MK and w ∈MK′ . We say that
w | v if w |K= v. If K is a number field we say that v is a p-adic valuation if v |Q= p.

Definition 1.6. A completion of K with respect to the place v is an extension field Kv

with a place w such that:

i) w | v.
ii) the topology of Kv induced by w is complete (all Cauchy sequences converge).
iii) K ⊆ Kv is dense.

By abuse of notation we denote w by v.

Theorem 1.7. The completion exists and it is unique up to isometric isomorphism.

Proof. (ideas) As in the construction of R from Q. Take all the Cauchy series and consider
then equivalent if their difference converges. �

Theorem 1.8. (Ostrowski, several references in [1]) The only complete archimedean fields
are R and C.

Corollary 1.9. Q has a unique archimedean absolute value.

Example 1.10. Q3 is the completion of Q with respect to the 3-adic valuation. x =∑∞
n≥n0

xn3n ∈ Q3 with xn ∈ {0, 1, 2} can be seen as the Cauchy sequence {XN} with

XN =
∑N

n≥n0
xn3n ∈ Q. For instance: 1

5
= ...1210121023

Proposition 1.11. Let K/Q be a number field of degree n = r1 + 2r2 with {ρ1, ..., ρr1}
real embeddings and {τ1, τ̄1, ..., τr2 , τ̄r2} complex embeddings. Then there is a bijection:

{ρ1, ..., ρr1 , τ1, τ2, ..., τr2} ↔M∞
K ,

where | x |σ=| σ(x) |∞. Let (p) = pe11 ...p
er
r be the factorization of the prime ideal (p) in

the maximal order of K. Then there is a bijection

{p1, ..., pr} ↔ {p− adic absolute values on K},
where | x |p= p− ordp(x)/ep.

The ring of integers of a number field may be characterized using absolute values:

(1.1) OK = {x ∈ K :| x |v≤ 1 for all v ∈M0
K}.

Proposition 1.12. Let L = K(α) be a finite extension. Let f(t) the minimal polynomial
of α and

f(t) = fk11 (t)...fkrr (t)

its factorization in Kv[t]. Then the homomorphisms

L→ Kj := Kv[t]/(fj(t))

are injective. Moreover, Kj is the completion of L with respect to the only absolute value
of Kj extending this of Kv. The absolute values corresponding to different j’s are different
and all appear in this way.

Proof. (ideas) verify the statements, see Proposition 1.3.1 in [1]. �

Corollary 1.13. (Degree formula) Let L/K be a finite separable extension, then∑
w|v

[Lw : Kv] = [L : K].
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Proof. By the primitive element theorem L = K(α) and we apply Proposition1.12. �

Let K be a number field and v ∈ MK , the local degree of v is nv = [Kv : Qv]. The
normalized absolute value is || x ||v=| x |nvv .

Example 1.14. Take K = Q, then
∏

v∈MQ
| x |v= 1.

Proposition 1.15. (Product formula) Let K be a number field (in a slightly more general
framework also works) and be x ∈ K∗. Then

∏
v∈MK

|| x ||v= 1.

Proof. Assume the result over Q. Then∏
v∈MK

|| x ||v=
∏

v0∈MQ

∏
v|v0

|| x ||v=
∏

v0∈MQ

|| NK/Q(x) ||v0= 1.

�

Example 1.16. Let K = Q(i), then M∞
K = {τ} with | x |τ= (xx̄)1/2 and ||x||τ = |x|2τ =

NQ(i)/Q(x) = xx̄. Let p ≡ 3 mod 4, then p is still prime in K and | x |p=| N(x) |1/2p ,
where the first absolute value is in K and the second in Q. We have ||x||p = |x|2p. If

p ≡ 1 mod 4, then p = pp̄ and | x |p= p− ordp(x) and ||x||p = |x|p. Finally, (2) = (1 + i)2

and | x |1+i= 2− ord(1+i)(x)/2 and ||x||1+i = |x|21+i = ||N(x)||2. For x = 2 + i all normalized
absolute values are 1 except ||x||2+i = 5−1 and ||x||τ = xx̄ = 5 and the product formula
holds.

2. Heights in projective spaces

This is extracted from [2, Section B2] and [1, Section 1.5].
Let P ∈ Pn(Q) = {(x0, x1, ...., xn) ∈ Qn+1}/ ∼1, it can be written in the form P =

(x0, x1, ...., xn) with xi ∈ Z and gcd((x0, x1, ..., xn) = 1. We define the height of P as

H(P ) = max{|x0|, ..., |xn|}.

Definition 2.1. Let K be a number field and P = (x0, x1, ..., xn) ∈ Pn(K). The (multi-
plicative) height and the logarithmic height are defined as:

HK(P ) =
∏
v∈MK

max{||x0||v, ..., ||xn||v}, and

hK(P ) = logHK(P ) =
∑
v∈MK

−nv min{v(x0), ..., v(xn)}.

Lemma 2.2. Let K be a number field and P ∈ Pn(K). Then

• HK(P ) is independent of the choice of homogeneous coordinates.
• HK(P ) ≥ 1 for all P ∈ Pn(K).
• Let K ′ be a finite extension of K, then HK′(P ) = HK(P )[K′:K].

Proof. Write P = (cx0, ..., cxn). Then∏
v∈MK

max{||cx0||v, ..., ||cxn||v} =
∏
v∈MK

||c||v
∏
v∈MK

max{||x0||v, ..., ||xn||v} =

=
∏
v∈MK

max{||x0||v, ..., ||xn||v}.

We can make one coordinate equal to 1, this implies the second item. The third one is a
consequence of the degree formula. �

1Two such points are equivalent if the coordinates of one are a multiple of the coordinates of the other.
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Definition 2.3. The absolute heights in Pn are defined as:

H(P ) = HK(P )1/[K:Q] and h(P ) = logH(P ) =
1

[K : Q]
hK(P ).

We can see elements α ∈ K as elements of P1 as (α, 1) and compute the corresponding
heights.

Example 2.4. Let P = (1, 3 +
√

3, 4, 1 + i), then
∏

v|∞max{||xi||v} = 42(3 +
√

3)2, and∏
v|p max{||xi||v} = 1. Hence, HK(P ) = 42(3 +

√
3)2, and H(P ) = 2

√
3 +
√

3. Check it
with Magma!! Use HeightOnAmbient(P);. Go to http://magma.maths.usyd.edu.au/

calc/.

Proposition 2.5. H(σ(P )) = H(P ).

Proof. We have isomorphisms σ : K → σ(K) and σ : MK →Mσ(K). Then

Hσ(K)(σ(P )) =
∏

w∈Mσ(K)

max{|σ(xi)|w}nw =
∏
v∈MK

max{|σ(xi)|σ(v)}nσ(v) =

∏
v∈MK

max{|xi|v}nv = HK(P ).

�

Theorem 2.6. For any B,D ≥ 0, the set

{P ∈ Pn(Q̄) : H(P ) ≤ B and [Q(P ) : Q] ≤ D}
is finite.

Proof. Take P = (x0 : x1 : ... : xn) with some coordinate equal to 1. Then max{||x0||v, ..., ||xn||v} ≥
max{||xi||v, 1}. Then H(P ) ≥ H(xi). We need to prove that for each 1 ≤ d ≤ D, the set
{x ∈ Q̄ : H(x) ≤ B and [Q(x) : Q] = d} is finite.

Let x ∈ Q̄ of degree d and x1, .., xd its conjugates. Let its minimal polynomial bee
Fx(T ) =

∏
(T − xi) =

∑
(−1)rsr(x)T d−r.

|sr(x)|v = |
∑

1≤i1≤...≤ir≤d

xi1 ...xir |v ≤ c(v, r, d) max
1≤i1≤...≤ir≤d

|xi1 ...xir |v ≤ c(v, r, d) max
1≤i≤d

|xi|rv.

Here c(v, r, d) =
(
d
r

)
≤ 2d if v is archimedean and = 1 if it is not. Then

max{|s0|v, ..., |sd(x)|v} ≤ c(v, d)
d∏
i=1

max{|xi|v, 1}d

where c(v, d) = 2d if v is archimedean and 1 otehrwise. Hence,

H(s0(x), ..., sd(x)) ≤ 2d
d∏
i=1

H(xi)
d = 2dH(x)d

2

.

Then for all x ∈ Q̄ with H(x) ≤ B and [Q(x) : Q] = d, it is a root of a polynomial with

coefficients H(s0, ..., sd) ≤ 2dBd2 . But there are only finitely many possibilities for those
coefficients. �

Corollary 2.7. (Kronecker’s theorem) Let K be a number field, and let P = (x0, ..., xn) ∈
Pn(K). Fix i with xi 6= 0. Then H(P ) = 1 if and only if the xj/xi is a root of unity or 0
for all j.

4

http://magma.maths.usyd.edu.au/calc/
http://magma.maths.usyd.edu.au/calc/


Proof. Given P = (x0, ..., xn) we define P r = (xr0, ..., x
r
n). If H(P ) = 1 then H(P r) = 1,

but there is only a finite number of points with height equal to 1, so the result follows. �

Corollary 2.8. (Northcott’s theorem) There are only finitely many algebraic integers of
bounded degree and bounded height.

Theorem 2.9. Let φ = (f0, ..., fm) : Pn → Pm be a rational map of degree d defined over
Q̄. Let Z ⊂ Pn be the subset of common zeros of the f ′is. Notice that φ is defined on
Pn/Z.

• h(φ(P )) ≤ dh(P ) +O(1) for all P ∈ Pn(Q̄)/Z.
• Let X be a closed subvariety of Pn with X∩Z = ∅. Then h(φ(P )) = dh(P )+O(1)

for all P ∈ X(Q̄).

Proof. We will prove only the first item, for the second we refer to Theorem B.2.5 in
[2]. Notice that fi =

∑
|e|=d ai,ex

e has
(
n+d
n

)
terms. Write |P |v = max{|xj|v}, |f |v =

max{|ae|v} and εv(r) = r if v is archimedean and 1 if it is not. Then |a1 + ... + ar|v ≤
εv(r) max{|ai|v}.

|fi(P )|v = |
∑
|e|=d

ai,ex
e|v ≤ εv

(
n+ d

n

)
max |ai,e|v max |xe|v ≤

≤ εv

(
n+ d

n

)
|fi|v max |xj|dv = εv

(
n+ d

n

)
|fi|v|P |dv.

We take the maximum over i, raise to the nv/[K : Q] and multiply for all v ∈MK .

HK(φ(P )) ≤
(
n+ d

n

)
H(φ)H(P )d,

where H(φ) =
∏

v∈MK
max{|f0|v, ..., |fm|v}nv/[K:Q]. Taking logarithms

h(φ(P )) ≤ dh(P ) + h(φ) + log

(
n+ d

n

)
.

�

3. Some results on the geometry of curves and abelian varieties

For this section and really depending on your background I have different suggestions:

• You already know about curves, varieties and abelian varieties: feel free to skip
this lecture.
• You a bit, but not that much: watch the video, it will be perfect to recall the

concepts we need in the follow.
• You do not know that much: then maybe the video is not enough and you need

to read more detailed material. Some suggestions: section A in [2], or if you only
want to focus only on dimension one varieties (curves), see [3, Chapters 1, 2].

4. The Néron-Tate height on abelian varieties

This is extracted from [2, Section B3, B4, B5] and [1, Section 9].

Definition 4.1. Let φ : V → Pn be a morphism. The height on V relative to φ is
hφ(P ) = h(φ(P )).
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Theorem 4.2. (Weil’s Height Machine) Let K be a number field. For every smooth
projective variety V/K there exists a map:

hV : Div(V )→ {functions V (K̄)→ R}

with the following properties:

(1) (Normalization) For all hyperplane H, hPn,H(P ) = h(P ) +O(1).
(2) (Functoriality) Let φ : V → W be a morphism and D ∈ Div(W ), then

hV,φ∗D(P ) = hW,D(φ(P )) +O(1).

(3) (Additivity) hV,D+E(P ) = hV,D(P ) + hV,E(P ) +O(1).
(4) (Linear equivalence) If D ∼ E, then hV,D(P ) = hV,E(P ) +O(1).
(5) (Positivity) If D > 0 and B is the base locus of the linear system |D|, then

hV,D(P ) ≥ O(1) for all P ∈ V \B.
(6) (Algebraic equivalence) D ample and E alg. eq. to 0, then

lim
hV,D(P )→∞

hV,E(P )

hV,D(P )
= 0.

(7) (Finiteness) D ample, K ′/K finite, B fixed, then {P ∈ V (K ′) : hV,D(P ) ≤ B} is
finite.

(8) (Uniqueness) The height functions hV,D are determined up to O(1).

Proof. The construction: if L(D) has no base point, we chose φD : V → Pn associated to
D and define hV,D(P ) = h(φD(P )) for all P ∈ V (K̄). For very other divisor D we write
it as D = D1 −D2 with Di with linear systems not having base points, we can even ask
for them to be ample. Then hV,D(P ) := hV,D1(P )− hV,D2(P ).

One needs to check that up to O(1), the height function hV,D is independent of the
morphism φD. See Theorem B.3.1 in [2].

The properties are left as an exercise. �

Remark 4.3. The constants are effective.

Corollary 4.4. Let A/K be an abelian variety over a number field. Let D be a divisor
and m an integer.

(1) hA,D([m]P ) = m2+m
2

hA,D(P ) + m2−m
2

hA,D(−P ) +O(1).
(2) If D is symmetric ([−1]∗D ∼ D), then hA,D(P +Q) +hA,D(P −Q) = 2hA,D(P ) +

2hA,D(Q) +O(1).
(3) If D is antisymmetric ([−1]∗D ∼ −D), then hA,D(P +Q) = hA,D(P ) +hA,D(Q) +

O(1).

Proof. Just notice that [m]∗D ∼ m2+m
2

D+ m2−m
2

[−1]∗D, and that hA,D ◦ [−1] = ±hA,D +
O(1) accordingly to D be symmetric or antisymmetric. �

Proposition 4.5. Let C/K be a smooth projective curve.

• Let D,E be divisors with deg(D) ≥ 1. Then

lim
hD(P )→∞

hD(P )

hE(P )
=

deg(E)

deg(D)
.

• Let f, g ∈ K(C) with f non-constant, then

lim
h(f(P ))→∞

h(g(P ))

h(f(P ))
=

deg(g)

deg(f)
.
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Proof. Let d = deg(D) and e = deg(E), Make An = n(eD − dE) + D who is ample for
having degree greater or equal than 1. The positivity property of the Weil machine gives
a constant:

−κ(D,E, n) ≤ hAn(P ) = n(ehD(P )− dhE(P )) + hD(P ),

that can be rewritten as

−κ(D,E, n)

ndhD(P )
− 1

nd
≤ e

d
− hE(P )

hD(P )
≤ κ(D,E, n)

ndhD(P )
+

1

nd
,

and by taking limits the first point holds.
For the second one, take div(f) = D − D′ and div(g) = E − E ′. On the other hand

hD = h ◦ f +O(1). Then,

lim
h(f(P ))→∞

h(g(P ))

h(f(P ))
= lim

hD(P )→∞

hD(P ) +O(1)

hE(P ) +O(1)
=

deg(E)

deg(D)
=

deg(g)

deg(f)
.

�

Theorem 4.6. (Néron-Tate) Let V/K be a smooth variety defined over a number field,
let D ∈ Div(V ) and φ : V → V be a morphism such that φ∗D ∼ αD for some α > 1.

Then there is a unique function (the canonical height on V relative to φ and D), ĥV,φ,D :
V (K̄)→ R such that:

• ĥV,φ,D(P ) = hV,D(P ) +O(1).

• ĥV,φ,D(φ(P )) = αĥV,φ,D(P ).

It only depends on the linear equivalence of D and it can be computed as:

ĥV,φ,D(P ) = lim
n→∞

1

αn
hV,D(φn(P )).

Proof. Applying the height machinery to φ∗D ∼ αD we get that there is a constant C
such that |hV,D(φ(Q))−αhV,D(Q)| ≤ C. The sequency α−nhV,D(φn(P )) converges because
it is Cauchy:

|α−nhV,D(φn(P ))− α−mhV,D(φm(P ))| = |
n∑

i=m+1

α−i(hV,D(φi(P ))− αhV,D(φi−1(P )))| ≤

n∑
i=m+1

α−i|hV,D(φi(P ))− αhV,D(φi−1(P ))| ≤
n∑

i=m+1

α−iC =
α−m − α−n

α− 1
C.

If m = 0 and n→∞ we get the first property. The second comes from the definition. �

Let us take in Theorem 4.6 V = A an abelian variety, φ = [2], D a symmetric divisor
and α = 4, then: the canonical height on A relative to D is such that:

(1) ĥA,D(P ) = hA,D(P ) +O(1).

(2) ĥA,D([m]P ) = m2ĥA,D(P )

(3) ĥA,D(P +Q) + ĥA,D(P −Q) = 2ĥA,D(P ) + 2ĥA,D(Q)

(4) < P,Q >D=
ĥA,D(P+Q)−ĥA,D(P )−ĥA,D(Q)

2
is bilinear.

(5) It only depends on the linear equivalence of D.

(6) ĥA,D(P ) ≥ 0 with equality if and only if P is of finite order.

Example 4.7. Let E : y2 = x3 − x and D = 3∞. L(D) =< 1, x, y >. Then hE,D is the
height on P2. φ = [2] and α = 4.

ĥE(P ) = lim
n→∞

1

22n
hE(2nP ).
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Notice that ĥE(2P ) = 4ĥE(P ). Let us take P = (2,
√

6, 1), then hE(P ) = log
√

6 =

0.8958.... 2P = (300 : −35
√

6 : 288) and hE(2P )/4 = 1
8
log3002

6
= 1.20197. Check it with

Magma!! NaiveHeight(P); Log(HeightOnAmbient(P)); Height(Q);

5. The (Weak) Mordell-Weil theorem

We follow here Section C.0 in [2] and Section 8 in [4].

Theorem 5.1. (Mordell-Weil) Let A be an abelian variety defined over a number field
K. Then the group A(K) of K-rational points of A is finitely generated.

Using elementary group theory we can rephrase previous theorem by saying that there
exist P1, ..., Pr ∈ A(K) such that:

A(K) = A(K)tors ⊕ ZP1 ⊕ ...⊕ ZPr,

with A(K)tors ' (Z/m1Z) ⊕ ... ⊕ (Z/msZ) and mi | mi+1 and s ≤ 2 dimA. The integer
r is called the rank and A(K) the Mordell-Weil group of A/K.

Theorem 5.2. (Weak Mordell-Weil) Let A be an abelian variety defined over a number
field K. Let A(K) be the group of K-rational points of A, and let m ≥ 2 be an integer.
Then the group A(K)/mA(K) is finite.

Lemma 5.3. (Descent lemma) Let G be an abelian group equipped with a quadratic form
q : G→ R2 such that for all C the set {x ∈ G | q(x) ≤ C} is finite. Assume further that
for some integer m ≥ 2, the group G/mG is finite. Then G is finitely generated. More
precisely, let g1, ..., gs be a set of representatives for G/mG, and let C0 := maxi q(gi).
Then G is generated by the finite set {x ∈ G | q(x) ≤ C0}.

Proof. We can assume q(x) ≥ 0. We set |x| :=
√
q(x), c0 := max |gi| and S = {x ∈ G :

|x| ≤ c0}. Let x0 ∈ G, si x0 ∈ S we are done, otherwise |x0| > c0 and x0 = gi + mx1

for some x1 ∈ G. The triangle inequality m|x1| = |x0 − gi| ≤ |x0| + |gi| < 2|x0|. Since
m ≥ 2, we find that |x1| < |x0|. If x1 ∈ S, then x0 ∈ 〈S〉. Otherwise, x1 = gj + mx2

and |x2| < |x1|. Continuing in this fashion |x0| > |x1| > |x2| > ... but G has only a finite
number of elements of bounded size. �

Proof. (Theorem 5.2 implies Theorem 5.1) We take q as the the Néron-Tate height on
A(K) associated to an ample divisor on A. �

Remark 5.4. (1) ”descent”
(2) All the points of bounded height can be computed.
(3) The order of A(K)/mA(K) can be effectively bounded, and hence the rank.

Theorem 5.5. Let A be an abelian variety defined over a number field K, let v be a
finite place of K at which A has good reduction. Let k be the residue field and let p be
the characteristic. Then for any m with p - m, the reduction map

A[m](K)→ Ā(k)

is injective.

I’m not following the proof in [2, Thm. C.1.4.] but the one suggested in the exercise
C.9 from the same reference.

2i.e., satisfying q(P + Q + R)− q(P + Q)− q(P + R)− q(Q + R) + q(P ) + q(Q) + q(R)− q(0) = 0, so
the pairing (q(P + Q)− q(P )− q(Q) + q(0))/2 is bilinear.
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Lemma 5.6. (Hensel’s) Let K be a p-adic field, i.e., the completion of a number field
with respect to a nonarchimedean place, let R be the ring of integers of K, and let π be a
uniformizer (a generator of the maximal ideal). Let P ∈ R[x] and x0 ∈ R be an element
satisfying P (x0) ≡ 0 mod π and P ′(x0) 6= 0 mod π, then there exists a unique x ∈ R such
that P (x) = 0 and x ≡ x0 mod π.

Proof. We construct x as the limit of a sequence x0, x1, x2, ... such that P (xi) ≡ 0 mod πm+1

and xm ≡ xm−1 mod πm. Write xm = xm−1 +πmym and P (xm) =
∑
ai(xm−1 +πmym)i ≡∑

ai(x
i
m−1+iπmxi−1

m−1ym) mod πm = P (xm)+ymP
′(xm). Moreover, P ′(xm−1) ≡ P ′(x0) 6=

0 mod π. �

Lemma 5.7. (Hensel’s lemma generalization) Let P1, ..., Pr ∈ R[x1, ..., xs] and X0 ∈ Rs

be an element satisfying Pi(X0) ≡ 0 mod π and such that the matrix (∂Pi/∂xj(X0) mod π)
has rank r. Then there exists a X ∈ Rs such that Pi(X) = 0 and X ≡ X0 mod π.

Proof. We construct X as the limit of a sequence X0, X1, X2, ... such that P (Xi) ≡
0 mod πm+1 and xm ≡ Xm−1 mod πm. �

Proof. (of theorem 5.5) From the generalization of Hensel’s Lemma we have that if A
is a variety over K and Ā its reduction, given P̄ ∈ Ā(R/π) a non-singular point, there
exists a point P ∈ A(K) whose reduction is P̄ . Then A[m]→ Ā[m] is onto and hence an
isomorphism. In particular, it is injective and the result in the theorem holds.

�

Theorem 5.8. Let A be an abelian variety of dimension g defined over a number field
K, and fix an integer m ≥ 2. Suppose that the m-torsion of A is K-rational. Let S be a
finite set of places of K that contains all places dividing m and all places of bad reduction
of A. Assume further that the ring of S-integers OK,S is principal. Then

rankA(K) ≤ 2g rankO∗K,S = 2g(r1 + r2 + |S| − 1).

Elliptic curve rank’s records

Theorem 5.9. (Mazur’s Theorem) Let E be an elliptic curve, suppose that E(Q) contains
a point of finite order m. Then either 1 ≤ m ≤ 10 or m = 12. More precisely, the set of
points of finite order in E(Q) forms a subgroup that has one of the following forms:

(i) A cyclic group of order N with 1 ≤ N ≤ 10 or N = 12.
(ii) The product of a cyclic group of order two and a cyclic group of order 2N with

1 ≤ N ≤ 4.

Theorem 5.10. (Lutz-Nagell) Let E be given by y2 = x3 + Ax + B with A,B ∈ Z.
Let P = (x, y) ∈ E(Q). Suppose P has finite order. Then x, y ∈ Z. If y 6= 0 then
y2|4A3 + 27B2.

Proof. (idea) If denominators the multiples do not have bounded height. �

Theorem 5.11. Let E be given by y2 = (x−e1)(x−e2)(x−e3) with e1, e2, e3 ∈ Z. The map
φ : E(Q)→ (Q×/Q×2)⊕(Q×/Q×2)⊕(Q×/Q×2) defined by (x, y) 7→ (x−e1, x−e2, x−e3)
when y 6= 0, ∞ 7→ (1, 1, 1), (e1, 0) 7→ ((e1 − e2)(e1 − e3), e1 − e2, e1 − e3), (e2, 0) 7→
(e2 − e1, (e2 − e1)(e2 − e3), e2 − e3) and (e3, 0) 7→ (e3 − e1, e3 − e2, (e3 − e1)(e3 − e2)) is a
homomorphism. The kernel of φ is 2E(Q).

Example 5.12. Let us consider the elliptic curve E : y2 = x3 − 25x. We easily find
the following rational points {∞, (0, 0), (5, 0), (−5, 0), (−4, 6)}. We have that 2(−4, 6) =

(412

252
,−62279

1728
), so it is non-torsion. Lutz-Nagell theorem actually implies that E(Q)tors =
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{∞, (0, 0), (5, 0), (−5, 0)} ' Z/2Z ⊕ Z/2Z. We will try to prove now that the rank is
actually 1 and the nontorsion points are generated by (−4, 6). We have that φ(−4, 6) =
(−1,−1, 1), φ(0, 0) = (−1,−5, 5), φ(5, 0) = (5, 2, 10) and φ(−5, 0) = (−5,−10, 2). Hence,
φ(−4, 6) times the previous values correspond to some points: (1, 5, 5), (−5,−2, 10), (5, 10, 2).
If we write x = au2, x − 5 = bv2 and x + 5 = cw2 we have φ(x, y) = (a, b, c). Where
a, b, c ∈ {±1,±2,±5,±10}. Since abc is a square we can forget about c. There are 64
possibilities for (a, b). We already got 8 of them. We will eliminate the other 56. If
a < 0 it is also b, and if a > 0, also c and hence b. This eliminates 32 possibilities.
One by one inspection of the remaining cases removes the other possibilities. Hence,
E(Q)/2E(Q) ' Z/2Z⊕Z/2Z⊕ (Z/2Z)r with r = 1 since the image of φ has order 8. So,
finally, E(Q) ' Z/2Z⊕ Z/2Z⊕ Z.

6. Falting’s theorem and proof strategy

Theorem 6.1. (Faltings) Let K be a number field, and let C/K be a curve of genus
g ≥ 2. Then C(K) is finite.

Conjectured by Mordell in 1922 and proved by Faltings in 1983: quite complicated tech-
niques. Vojta came up with a proof based on Diophantine Geometry. Faltings simplified
it and then Bombieri even more.

Theorem 6.2. (Vojta’s inequality) Let C/K be a smooth projective curve of genus g ≥ 2
with C(K) 6= ∅. There are constants κ1 = κ1(C) and κ2 = κ2(g) such that if z, w ∈ C(K̄)
are two points satisfying |z| ≥ κ1 and |w| ≥ κ2|z|, then 〈z, w〉 ≤ 3

4
|z||w|3.

Proof. (Vojta’s inequality implies Falting’s Theorem) The kernel of J(K) → J(K) ⊗ R
is the torsion group J(K)tors which is finite. In order to prove that C(K) is finite we
will prove that its image in J(K) → J(K) ⊗ R is finite. The bilinear form 〈·, ·〉 makes
J(K)→ J(K)⊗R into a finite-dimensional Euclidean space. We define the angle: θ(x, y)
as

cosθ(x, y) =
〈x, y〉
|x||y|

, 0 ≤ θ(x, y) ≤ π.

We define the cone Γx0,θ0 = {x ∈ J(K)⊗R | θ(x, x0) < θ0}. Assume #(Γx0,θ0 ∩C(K)) =
∞, then there exists z ∈ Γx0,θ0 ∩ C(K) with |z| ≥ κ1 and then w ∈ Γx0,θ0 ∩ C(K) with
|w| ≥ κ2|z|. Then 〈z, w〉 ≤ 3

4
|z||w|, or equivalently θ(z, w) ≥ π/6. But the angle between

them is lees or equal than 2θ0. Then Γx0,π/12∩C(K) is finite for all x0 ∈ J(K)→ J(K)⊗R.
We can cover J(K) → J(K) ⊗ R with a finite number of this cones. So there is only a
finite number of rational points. �

How to prove Vojta’s inequality?
Some non-trivial lower and upper bounds for hΩ are obtained as well as ”small” enough

equations for a positive divisor in the class of Ω. Roth’s Lemma is also used.
Nice survey on computing rational points ... and another one!

7. Height Bounds and Height Conjectures

Most important unsolved problem in Diophantine Geometry.

Conjecture 7.1. (abc, Masser-Oesterlé) For all ε > 0 there exists a constant Cε > 0
such that if a, b, c ∈ Z are coprime integers satisfying a+ b+ c = 0, then

max{|a|, |b|, |c|} ≤ Cε(rad(abc))1+ε.

3Let Θ be the theta divisor in J(C) who is ample and | · | the norm induce by |x|2 = ĥJ,Θ(x). Then
we have the pairing 〈x, y〉 = 1

2 (|x + y|2 − |x|2 − |y|2)
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Mochizumi 2012, Scholze and Stix 2018.
The abc-conjecture implies Falting’s Theorem, asymptotic Fermat’s Last Theorem,

Szpiro conjecture, Lang conjecture, and many others.

Proof. (abc implies asymptotic Fermat’s Last Theorem) Suppose xp + yp + zp = 0 for
nonzero coprime integers x, y, z. We may assume |x| ≤ |y| ≤ |z|. Then the abc conjecture
implies that |z|p = max{|x|p, |y|p, |z|p} ≤ Cε(rad(xpypzp))1+ε ≤ Cε|xyz|1+ε ≤ Cε|z|3+ε.
Hence, p− 3(1 + ε) ≤ log2Cε. So there is not nontrivial solution for p big enough. �

Proof. (abc implies Falting’s Theorem, Elkies) For any rational number x 6= 0, 1, let
N0(x) =

∏
ordp(x)>0 p, N1(x) =

∏
ordp(x−1)>0 p, N∞(x) =

∏
ordp(x)<0 p and set N(x) =

N0(x)N1(x)N∞(x). We re-state the abc conjecture as N(x) ≥ CεH(x)1−ε.
Let C/Q be a curve of genus g ≥ 2. Belyi’s theorem says that there is a finite map

f : C → P1, say of degree d, that is ramified only above the three points {0, 1,∞}.
Letting m := #(f−1(0, 1,∞)) and using Riemann-Hurwitz theorem we get

2g − 2 = −2d+ (3d−m) = d−m.
We will take ε < (2g − 2)/d in order to get m/d < 1− ε.

Let D0 =
∑

ordQ(f)>0 ordQ(f)(Q) and D′0 =
∑

ordQ(f)>0(Q). Let d′0 = deg(D′0). The

divisor d′0D0 − dD′0 has degree 0 so it is algebraically equivalent to 0 in C, and D0 is

ample, so hD′0 =
d′0
d
hD0 +O(

√
hD0).

Let P ∈ C(Q) with f(P ) 6= 0,∞, a prime occurs in the numerator of f(P ) if and only
if it contributes to the height HD′0

(P ), so N0(f(P )) � HD′0
(P ). Then logN0(f(P )) ≤

d′0
d
hD0(P ) +O(

√
hD0(P )) =

d′0
d
h(f(P )) +O(

√
h(f(P ))). We repeat the argument with 1

and ∞. Noting that d′0 + d′1 + d′∞ = m yields:

logN(f(P )) ≤ m

d
h(f(P )) +O(

√
h(f(P ))).

The abc conjecture tells us that for any ε > 0 there is a constant cε such that logN(f(P )) ≥
(1− ε)h(f(P ))− cε. Then (1− ε− m

d
)h(f(P )) ≤ c′ε and we get an upper bound for h(P ).

So, there is a finite number of rational points and the bound is effective. �

The abc conjecture implies among others, the following conjectures and Roth’s theo-
rem:

Conjecture 7.2.

• (Szpiro) log |∆E/K | ≤ (6 + ε) logFE,K + C(K, ε). 4

• (Frey) hK(jE) ≤ (6 + ε) logFE,K + C(K, ε)

• (Lang) ĥ(P ) ≥ c(K) log NK/Q ∆E,K for all non-torsion point P ∈ E(K).

Theorem 7.3. (Roth’s theorem) For every algebraic number α and every ε > 0, the
inequality | p

q
− α |≤ 1

q2+ε
has only finitely many rational solutions p/q ∈ Q.

8. Exercises

Exercise 8.1. Prove the equivalence in Definition 1.3.

Exercise 8.2. Prove equation 1.1.

Exercise 8.3. Take K = Q and S = {2, 3, 5} in ??. Take x2 = x3 = x5 = 2 and
ε = 1/30. Find an x as in the theorem.

Exercise 8.4. Prove that
∏

v|v0 || x ||v=|| NK/Q(x) ||v0 .
4The conductor is FE,K =

∏
p|∆E

pδp .
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Exercise 8.5. Example with cubic field and Proposition 1.12.

Exercise 8.6. Add the details of the third point in Lemma 2.2.

Exercise 8.7. Let a1, ..., ar algebraic numbers, then

h(a1 + ...+ ar) ≤ h(a1) + ...+ h(ar) + log r.

Exercise 8.8. Let φ : P2 → P2 be the rational map φ(x, y, z) = (x2, y2, xz). It is defined
except at (0, 0, 1).

• Take P = (x, y, z) with x, y, z ∈ Z and gcd(x, y, z) = 1. Prove that h(φ(P )) =
log max{|x2|, |y2|, |xz|} − log(gcd(x, y2)).
• Show that there is no value c such that h(φ(P )) ≥ 2h(P )− c holds for all P .
• More generally, prove that{

h(φ(P ))

h(P )
: P ∈ P2(Q) and h(P ) 6= 0

}
is dense in [1, 2].

Exercise 8.9. Let a ∈ Z be a nonzero square-free integer, and let φ : P1 → P1 be the
map φ(x, y) = (2xy : x2 + ay2). Then phi∗(0, 1) = (0, 1) + (1, 0) ∼ 2(0, 1), so there is a
canonical height associated to φ and the divisor D = (0, 1). Find an explicit formula for
this caninical height on P1(Q). (Hint. This one of the few rational maps on P1 for which
it is possible to find a simple closed formula for the iterates φn).

Exercise 8.10. Let G be an abelian group, let m > 2 an integer such that the quotient
G/mG is finite, and let x1, ..., xs ∈ G be a complete set of coset representatives for G/mG.
Suppose that there are constants A,B,C,D ≥ 0 with A > B (depending on G,m, and
x1, ..., xs) and a function h : G → R with the property that h(mx) ≥ A(h(x) − C) and
h(x+xi) ≤ Bh(x)+D for all x ∈ G and 1 ≤ i ≤ s. Prove that the set {x ∈ G|h(x) ≤ C+D

A−B }
generates the group G.

Exercise 8.11. Give a bound, or even better compute exactly, the quantity #Ators(Q)
for the following elliptic curves A/Q:

(1) y2 = x3 − 1.
(2) y2 = x3 − 4x.
(3) y2 = x3 + 4x.
(4) y2 + 17xy − 1208 = x3 − 60x2.

Exercise 8.12. Let C be a curve of genus g defined over Fp, and let J = Jac(C) be its
Jacobian variety. For each integer m ≥ 1, let Nm(C) = #C(Fpm) and Nm(J) = #J(Fpm).
There exist algebraic integers ai such that Nm(C) = pm + 1 − (am1 + ... + am2g) for all

m ≥ 1. Furthermore, the polynomial P (T ) :=
∏2g

i=1(1− aiT ) has integer coefficients and
leading coefficient pg, and it satisfies P (T ) = pgT 2gP (1/pT ). Then N1(J) = #J(Fp) =

P (1) =
∏2g

i=1(1 − ai). Prove that the first g cardinalities N1(C), N2(C), ..., Ng(C) for
C determine the cardinality N1(J). In particular, prove that when g = 2, N1(J) =
1
2
(N1(C)2 +N2(C))− p. Find a similar formula for g = 3. (Hint. Use Newton’s formulas

relating elementary symmetric polynomials to sums of powers.)
Let A be the Jacobian of the curve y2 = x5−x. Compute the torsion subgroup Ators(Q).
(Hint. Determine the rational 2- torsion points in A(Q). Then use the first part and
reduce modulo 3 and modulo 5 to prove that Ators(Q) is generated by its 2-torsion and
possibly a single rational 3-torsion point. Finally, determine whether or not there is such
a 3-torsion point.)
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Exercise 8.13. For each of the following curves C/Q, let J = Jac(C) and find as accurate
a bound as you can for the Mordell-Weil rank of J .

(1) Let C : y2 = x5 − x. Find bounds for rank J(Q) and rank J(Q(i)). (Hint. Use
Theorem 5.8 and show that rank J(Q(i)) = 2rank J(Q).)

(2) Let C : y2 = x6 − 1, and let η = e2πi/3 be a primitive cube root of unity. Find
bounds for rankJ(Q) and rank J(Q(η)). (Hint. Use Theorem 5.8 and show that
rank J(Q(n)) = 2rank J(Q).)

(3) Let C : y2 = x(x2 − 1)(x2 − 4). Find a bound for rank J(Q).

Exercise 8.14. Let C/Q be the smooth projective curve birational to the affine curve
2y2 = x4 − 17. This exercise sketches a proof that C(Qv) 6= ∅ for all places v of Q, yet
C(Q) = ∅.

(1) Show that C has good reduction at all primes except 2 and 17, and that C̄(Fp)
contains a nonsingular point for every prime p. Conclude that C(Qp) 6= ∅ for all
primes p. (Hint. Use Weil’s estimate (Exercise 8.12) to get points modulo p, and
then Hensel’s lemma to lift them to p-adic points.)

(2) Check that C(R) 6= 0.
(3) Show that the two points at infinity on C are not rational over Q.
(4) Suppose that C(Q) contained a point. Prove that there would then exist coprime

integers a, b, c satisfying a4 − 17b4 = 2c2.
(5) Let a, b, c be as before. Prove that c is a square modulo 17. (Hint. For odd p

dividing c, use the fact that p is a square modulo 17 if and only if 17 is a square
modulo p.) Conclude that 2 is a 4th power modulo 17. This contradiction implies
that C(Q) = ∅.

Exercise 8.15. Let C be the smooth projective curve with affine open subset U defined
by y2 + y = x5, let P0 = (0, 0), let P1 = (0,−1), and let P∞ denote the point at infinity.
Consider the Jacobian variety J of C and the natural embedding j : C → J defined by
mapping P to the divisor class of (P )− (P∞).

(1) It turns out that rank J(Q) = 0. Assuming this, prove that J(Q) ' Z/5Z.
(2) Prove that j(P1) = 4j(P0).
(3) Prove that 2j(P0), 3j(P0) /∈ j(C).
(4) Conclude that C(Q) = {P0, P1, P∞}.
(5) Use this exercise to prove Fermat’s Last Theorem for exponent p = 5. (Hint. Use

the fact that if A5+D5 = B5 withD 6= 0, then (x, y) = (AB/D2, A5/D5) ∈ C(Q).)

Exercise 8.16. (1) Let E/Q be an elliptic curve, let ∆E and NE be respectively the
minimal discriminant and conductor of E/Q, and write 1728∆E = c3

4−c2
6 as usual.

(See, e.g., [3, Section III.1]). Apply the abc conjecture to this equality (suitably
divided by a gcd) to prove that max{|DeltaE|, |c3

4|, |c2
6|} ≤ CεN

6+ε
E . Deduce that

the abc conjecture implies Szpiro’s conjecture and Frey’s conjecture.
(2) Let a, b, and c be coprime integers satisfying a + b + c = 0 and 24 divides abc.

Consider the elliptic curve Ea,b,c : y2 = x(x − a)(x + b). Prove that ∆Ea,b,c =
(2−4abc)2 and j(Ea,b,c) = 28(a2 + ab+ b2)/(abc)2.

(3) Prove that Frey’s conjecture implies that the abc conjecture is true. (Hint. Apply
Frey’s conjecture to the curve Ea,b,c)

(4) Consider the elliptic the curve E ′a,b,c : y2 = x3 − 2(a − b)x2 + (a + b)2x. Prove

that E ′a,b,c, has discriminant 28abc4. Verify that the map Ea,b,c → E ′a,b,c : (x, y) 7→
(y2/x2,−y(ab + x2)/x2), is an isogeny of degree 2. Use these facts to show that
Szpiro’s conjecture implies the abc conjecture with the weaker exponents 6/5 + ε.
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Argand 11, 2000 Neuchâtel Switzerland.

Email address: elisa.lorenzo@unine.ch

14


	1. Absolute values on number fields and the product formula
	2. Heights in projective spaces
	3. Some results on the geometry of curves and abelian varieties
	4. The Néron-Tate height on abelian varieties
	5. The (Weak) Mordell-Weil theorem
	6. Falting's theorem and proof strategy
	7. Height Bounds and Height Conjectures
	8. Exercises
	References

