DIOPHANTINE GEOMETRY
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We are mainly following [2] and [I].

1. ABSOLUTE VALUES ON NUMBER FIELDS AND THE PRODUCT FORMULA

This is extracted from [2, Section B1] and [I, Sections 1.2-1.4].
The traditional way to describe the size of an algebraic number is through the use of
absolute values.

Recall: algebraic number, number field, Galois closure, Galois group. Examples:

Q(i,v3), Q(a) with a® + a®> — 1 = 0 that it is not Galois, you need to add /=23 to get

the Galois closure.

ot Ot W
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14

Definition 1.1. An absolute value on a field K is a function | - |: K — [0, 00) such that

i) | x |= 0 if and only if z = 0 (non degenerate)
i) | zy |=| || y | (multiplicative)

iii) |z +y |<| x|+ | y| (triangle inequality)
It is said to be nonarchimedean if it satisfies:

iv) |z +y|<max{| z|,| y |} (ultrametric inequality)

Example 1.2. Let us consider K = Q:

e Archimedean absolute value on Q: | = |= max{z, —z}.
e Nonarchimedean p-adic absolute value on Q: =z = p

ptab. If x =0 we set ord,(z) = co. | x |,= p~ @),

ordy(x) a

b

with a,b € Z and

The number z is p-adically small if it is divisible by a large power of p. ord, is the p-adic
valuation on Q.

Definition 1.3. Two absolute values are equivalent if they define the same topology, i.e.,
if there exists s € Ry such that | z |o=| x |5.

Definition 1.4. M is the set of absolute values up to equivalence, M7 the archimedean
ones, and MY the nonarchimedean ones.
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Given an absolute value | - |€ My we can define a valuation (or place) v(z) = —log | = |
and we write | - | as | - |, and even v € M.

Definition 1.5. Let K’/K be a field extension. Let v € Mg and w € Mg:. We say that
w|vif w|g=v. If K is a number field we say that v is a p-adic valuation if v |g= p.

Definition 1.6. A completion of K with respect to the place v is an extension field K,
with a place w such that:
i) w|w.
ii) the topology of K, induced by w is complete (all Cauchy sequences converge).
ili) K C K, is dense.
By abuse of notation we denote w by v.

Theorem 1.7. The completion exists and it is unique up to isometric isomorphism.

Proof. (ideas) As in the construction of R from Q. Take all the Cauchy series and consider
then equivalent if their difference converges. U

Theorem 1.8. (Ostrowski, several references in [1]) The only complete archimedean fields
are R and C.

Corollary 1.9. Q has a unique archimedean absolute value.

Example 1.10. Q3 is the completion of Q with respect to the 3-adic valuation. z =
S ,3" € Q3 with x, € {0,1,2} can be seen as the Cauchy sequence { Xy} with

n>ng
Xy =Y 0o, Ta3" € Q. For instance: 1 = ...121012102;

Proposition 1.11. Let K/Q be a number field of degree n = 1 + 2ry with {p1, ..., pr, }
real embeddings and {11, Ty, ..., Try, Try } complex embeddings. Then there is a bijection:

00
{pla coey Pryy T1, T2, "'77_7’2} A MK7

where | z |,=| 0() |- Let (p) = p7...pc be the factorization of the prime ideal (p) in
the mazximal order of K. Then there is a bijection

{p1, ..., pr} < {p — adic absolute values on K},
where | z |,= p~ord@)/en,
The ring of integers of a number field may be characterized using absolute values:
(1.1) Ok ={re€K:zl|,<1foralve My}

Proposition 1.12. Let L = K(«) be a finite extension. Let f(t) the minimal polynomial
of a and

F&) = [ (@) £ (2)

its factorization in K,[t]. Then the homomorphisms
L — Kj = K[t]/(f;(t))

are injective. Moreover, K; is the completion of L with respect to the only absolute value
of K; extending this of K,,. The absolute values corresponding to different j’s are different
and all appear in this way.

Proof. (ideas) verify the statements, see Proposition 1.3.1 in [1]. O
Corollary 1.13. (Degree formula) Let L/ K be a finite separable extension, then

> Ly : K] =[L:K].

wlv
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Proof. By the primitive element theorem L = K(«) and we apply Propositionl.12,  [J

Let K be a number field and v € My, the local degree of v is n, = [K, : Q,]. The
normalized absolute value is || x ||,=]| z |*.

Example 1.14. Take K = Q, then [[,¢;7, [ [o=1.

Proposition 1.15. (Product formula) Let K be a number field (in a slightly more general
framework also works) and be x € K*. Then [] | z ||,= 1.

Proof. Assume the result over Q. Then

IT nelh=TI T11elb= TI I Nasa(@) [lo=1.

vEME ’UoGMQ v|v0 ’UoEMQ

veEMK |

g

Example 1.16. Let K = Q(i), then M = {7} with | z |,= (22)"/? and ||z||, = |z|? =
No@yo(x) = 2. Let p = 3 mod 4, then p is still prime in K and | = |,=| N(x) 113/2,
where the first absolute value is in K and the second in Q. We have |[z|], = [z[}. If
p =1mod 4, then p = pp and | x |,= p~o®® and ||z||, = |z|,. Finally, (2) = (1 +i)?
and | z |14= 27 0+0@/2 and ||z]|,4; = |2[3,; = [|N(z)|]2. For z = 2 + i all normalized
absolute values are 1 except ||z||or; = 57! and ||z||, = zZ = 5 and the product formula

holds.

2. HEIGHTS IN PROJECTIVE SPACES

This is extracted from [2, Section B2] and [I, Section 1.5].
Let P € P*(Q) = {(z0, 71, ....,x,) € Q"T1}/ ~J] it can be written in the form P =
(xo, 1, ..., T,) with x; € Z and ged((xg, x1, ..., z,) = 1. We define the height of P as

H(P) = max{|xq|, ..., |xa| }-
Definition 2.1. Let K be a number field and P = (xg, z1, ..., z,,) € P"(K). The (multi-
plicative) height and the logarithmic height are defined as:

Hy(P) = [ max{||zolls, ... [|zall}, and

hi(P) =log Hg(P) = Y —nymin{v(zo), ..., v(z,)}.

Lemma 2.2. Let K be a number field and P € P*(K). Then

o Hy(P) is independent of the choice of homogeneous coordinates.
e Hi(P)>1 forall P € P"(K).
o Let K' be a finite extension of K, then Hp(P) = Hy(P)E" K]

Proof. Write P = (cxy, ..., cx,). Then
[T max{llezollo, .. llewalle} = T el TT max{llaollo, - llzall.} =

vEM g vEME vEME
= 1T max{llolo, ., [lzall.}.
'UGMK
We can make one coordinate equal to 1, this implies the second item. The third one is a
consequence of the degree formula. O

ITwo such points are equivalent if the coordinates of one are a multiple of the coordinates of the other.
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Definition 2.3. The absolute heights in P" are defined as:

H(P) = Hg(P)Y¥U and h(P) =log H(P) = ———
We can see elements a@ € K as elements of P! as («, 1) and compute the corresponding
heights.
Example 2.4. Let P = (1,3 ++/3,4,1+14), then [ 1,0 max{|[zi|l,} = 4°(3 + V3)2, and

[1,, max{||z;|[,} = 1. Hence, Hx(P) = 42(3 ++/3)%, and H(P) = 2v/3 + /3. Check it
with Magmal! Use HeightOnAmbient (P);. Go to http://magma.maths.usyd.edu.au/
calc/.

Proposition 2.5. H(c(P)) = H(P).
Proof. We have isomorphisms 0 : K — ¢(K) and 0 : Mg — My(x). Then

Hoy (i) (0(P)) = H max{|o(x;)|,}" = H max{|o(z;)|s() }"® =

U)EMU(K> vEME
[T max{lel,}™ = Hic(P).
vEME
U
Theorem 2.6. For any B, D > 0, the set
{PeP(Q): H(P)< B and [Q(P) : Q] < D}

is finite.
Proof. Take P = (x¢ : 7 : ... : x,) with some coordinate equal to 1. Then max{||zo||v, .-, ||Zn||o} >

max{||z;||,, 1}. Then H(P) > H(x;). We need to prove that for each 1 < d < D, the set
{reQ: H(z) < B and [Q(z) : Q] = d} is finite.
Let x € Q of degree d and zy,..,z, its conjugates. Let its minimal polynomial bee
Fo(T) = TI(T — 2:) = 32(=1)"sp ()T
|sp ()]0 = | Z Tiy T, |0 < (v, 7, d) 1911;1'%%(“@’%1---%\11 < c(v,r,d) fg?g)il‘mv'
1<ii<..<i,<d

Here c(v,r,d) = (f) < 2% if v is archimedean and = 1 if it is not. Then

d
max{|soly, .., [Sa(2)]» } < c(v,d) Hmax{|xi|v, 1}
i=1

where c(v,d) = 2% if v is archimedean and 1 otehrwise. Hence,
d
H(so(@), ... sa(w)) < 20 T[ H(z)? = 2°H (2) .
i=1

Then for all z € Q with H(z) < B and [Q(z) : Q] = d, it is a root of a polynomial with
coefficients H (so, ..., sq) < 2¢B*. But there are only finitely many possibilities for those
coefficients. U

Corollary 2.7. (Kronecker’s theorem) Let K be a number field, and let P = (xq, ..., x,) €
P*"(K). Fizi with x; # 0. Then H(P) =1 if and only if the x;/x; is a root of unity or 0
for all j.
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Proof. Given P = (zg, ..., z,) we define P" = (zf,...,2]). If H(P) =1 then H(P") = 1,
but there is only a finite number of points with height equal to 1, so the result follows. [J

Corollary 2.8. (Northcott’s theorem) There are only finitely many algebraic integers of
bounded degree and bounded height.

Theorem 2.9. Let ¢ = (fo, ..., fm) : P" — P™ be a rational map of degree d defined over
Q. Let Z C P" be the subset of common zeros of the fls. Notice that ¢ is defined on
P /Z.

o h(¢(P)) < dh(P)+ O(1) for all P € P*(Q)/Z.

o Let X be a closed subvariety of P™ with XNZ = 0. Then h(¢(P)) = dh(P)+0(1)

for all P € X(Q).
Proof. We will prove only the first item, for the second we refer to Theorem B.2.5 in
[2]. Notice that f; = 3,4 aiex® has (") terms. Write |P|, = max{|z;|,}, |fl, =
max{|a.|,} and €,(r) = r if v is archimedean and 1 if it is not. Then |a; + ... + a;|, <
€y () max{|a;|, }.

n+d
|fi(P)lo = | Z a; x|, < 61}( n ) max |a; e |, max |z¢|, <
le|=d

n+d n+d
= i [T e G [T

n

We take the maximum over ¢, raise to the n,/[K : Q] and multiply for all v € M.
n+d
)iy

n

Hic(o(P)) < (

where H(¢) =[], e, max{[folo -, | frnlo} /@ Taking logarithms

bo(P) < an(P) + i) +1og (" 7).

3. SOME RESULTS ON THE GEOMETRY OF CURVES AND ABELIAN VARIETIES

For this section and really depending on your background I have different suggestions:

e You already know about curves, varieties and abelian varieties: feel free to skip
this lecture.

e You a bit, but not that much: watch the video, it will be perfect to recall the
concepts we need in the follow.

e You do not know that much: then maybe the video is not enough and you need
to read more detailed material. Some suggestions: section A in [2], or if you only
want to focus only on dimension one varieties (curves), see [3, Chapters 1, 2].

4. THE NERON-TATE HEIGHT ON ABELIAN VARIETIES
This is extracted from [2, Section B3, B4, B5] and [1l, Section 9].

Definition 4.1. Let ¢ : V — P" be a morphism. The height on V relative to ¢ is
he(P) = h(¢(P)).
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Theorem 4.2. (Weil’s Height Machine) Let K be a number field. For every smooth
projective variety V /K there exists a map:

hy : Div(V) — {functions V(K) — R}
with the following properties:
(1) (Normalization) For all hyperplane H, hpn g (P) = h(P) 4+ O(1).
(2) (Functoriality) Let ¢ : V- — W be a morphism and D € Div(W), then
hvgp(P) = hw,p(¢(P)) + O(1).

(3) (Additivity) by, 5(P) = hyp(P) + hys(P) + O(1).

(4) (Linear equivalence) If D ~ E, then hyp(P) = hyg(P) + O(1).

(5) (Positivity) If D > 0 and B is the base locus of the linear system |D|, then
hyp(P) > O(1) for all P € V \ B.

(6) (Algebraic equivalence) D ample and E alg. eq. to 0, then

hve(P)
im =
hV,D(P)—>OO hV’D(P)

(7) (Finiteness) D ample, K'/K finite, B fized, then {P € V(K') : hyp(P) < B} is
finite.
(8) (Uniqueness) The height functions hy,p are determined up to O(1).

Proof. The construction: if £(D) has no base point, we chose ¢p : V' — P" associated to
D and define hy. p(P) = h(¢p(P)) for all P € V(K). For very other divisor D we write
it as D = Dy — Dy with D; with linear systems not having base points, we can even ask
for them to be ample. Then hy,p(P) := hy.p,(P) — hy.p,(P).

One needs to check that up to O(1), the height function hy p is independent of the
morphism ¢p. See Theorem B.3.1 in [2].

The properties are left as an exercise. O
Remark 4.3. The constants are effective.

Corollary 4.4. Let A/K be an abelian variety over a number field. Let D be a divisor
and m an integer.

(1) hap([m|P) = ™4 hy p(P) + ™52hy p(—P) + O(1).

(2) If D is symmetric ([—1]*D ~ D), then hap(P+ Q) +hap(P —Q) = 2hap(P)+

2ha,p(Q) +O(1).
(3) If D is antisymmetric ([—1]*D ~ —D), then ha p(P+ Q) = hap(P)+hap(Q)+
O(1).
Proof. Just notice that [m]*D ~ m2;mD + ngm[—l]*D, and that hy po[—1] = £hap+
O(1) accordingly to D be symmetric or antisymmetric. O

Proposition 4.5. Let C/K be a smooth projective curve.
e Let D, E be divisors with deg(D) > 1. Then

o 0(P) _ dea(P)
hp(P)—oo hp(P)  deg(D)’
o Let f,g € K(C) with f non-constant, then

oy Mg(P)) _ deg(g)
h(f(P)) o0 h(f(GP)) deg(f)




Proof. Let d = deg(D) and e = deg(F), Make A,, = n(eD — dE) + D who is ample for
having degree greater or equal than 1. The positivity property of the Weil machine gives
a constant:
—k(D,E,n) < hy, (P)=n(ehp(P) — dhg(P)) + hp(P),
that can be rewritten as
k(D,E,n) 1 <€ hg(P)
"~ ndhp(P)  nd —d  hp(P)
and by taking limits the first point holds.
For the second one, take div(f) = D — D" and div(g) = F — E’. On the other hand
hp =ho f+ O(1). Then,
h(g(P)) . hp(P)+O(1) _ deg(E) _ deg(g)

lim ————~ = lim

h(f(P)=so h(f(P))  ho(P)»oo hp(P)+O(1)  deg(D)  deg(f)’

k(D, E.,n) N 1
ndhp(P)  nd’

<

g

Theorem 4.6. (Néron-Tate) Let V/K be a smooth variety defined over a number field,
let D € Div(V) and ¢ : V. — V be a morphism such that ¢*D ~ aD for some a > 1.

Then there is a unique function (the canonical height on V' relative to ¢ and D), fALV,@D :
V(K) — R such that:
[ }:lV,(i),D(P) == hV,D(AP) + O(l)
® hvp(¢(P)) = ahvep(P).
It only depends on the linear equivalence of D and it can be computed as:
. | .
hvg.p(P) = lim —hyp(¢"(P)).
n—oo (x

Proof. Applying the height machinery to ¢*D ~ aD we get that there is a constant C'
such that |hy p(¢(Q))—ahyp(Q)| < C. The sequency a~"hy,p(¢"(P)) converges because
it is Cauchy:

la™ " hy,p(¢"(P)) — o "hy,p(¢™(P))| = | Z “(hy.p(¢'(P)) — ahyp(¢(P)))| <
i=m+1
> aTln(@(P) — ahup(e (P < 0 atio =" 0 c
i=m+1 s

If m = 0 and n — oo we get the first property. The second comes from the definition. [J

Let us take in Theorem V = A an abelian variety, ¢ = [2], D a symmetric divisor
and a = 4, then: the canonical height on A relative to D is such that:

1) hap(P) =hap(P)+O0(1).
2 hAD([ |P) = 2hAD(P)

(
(
(3) hap(P+ Q)+ hap(P—Q) = 2hAD(P) + 2h45(Q)
(
(

)
)

4) <PQ>p _ hap(P+Q)— hA p(P)~hap(@Q) - is bilinear.
)

5) It only depends on the hnear equivalence of D.
(6) hap(P)> 0 with equality if and only if P is of finite order.

Example 4.7. Let E: y? =2° —z and D = 300. L(D) =< 1,z,y >. Then hgp is the
height on P2, ¢ = [2] and a = 4.
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Notice that hg(2P) = 4hg(P). Let us take P = (2,v/6,1), then hp(P) = logyv6 =
0.8958.... 2P = (300 : —35v/6 : 288) and hy(2P)/4 = {log®® = 1.20197. Check it with
Magma!! NaiveHeight (P); Log(HeightOnAmbient (P)); Height(Q);

5. THE (WEAK) MORDELL-WEIL THEOREM
We follow here Section C.0 in [2] and Section 8 in [4].

Theorem 5.1. (Mordell-Weil) Let A be an abelian variety defined over a number field
K. Then the group A(K) of K-rational points of A is finitely generated.

Using elementary group theory we can rephrase previous theorem by saying that there
exist P, ..., P, € A(K) such that:

AK) = A(K )1ors ® ZP, & ... ® TP,

with A(K)ors >~ (Z/m1Z) @ ... ® (Z/mZ) and m; | m;yq and s < 2dim A. The integer
r is called the rank and A(K') the Mordell-Weil group of A/K.

Theorem 5.2. (Weak Mordell-Weil) Let A be an abelian variety defined over a number
field K. Let A(K) be the group of K-rational points of A, and let m > 2 be an integer.
Then the group A(K)/mA(K) is finite.

Lemma 5.3. (Descent lemma) Let G be an abelian group equipped with a quadratic form
qg: G— ]RH such that for all C the set {x € G | q(x) < C} is finite. Assume further that
for some integer m > 2, the group G/mG 1is finite. Then G is finitely generated. More
precisely, let gi,...,gs be a set of representatives for G/mG, and let Cy = max; q(g;).
Then G is generated by the finite set {z € G | q(z) < Cp}.

Proof. We can assume ¢q(z) > 0. We set |z| := y/q(z), ¢p := max |g;| and S = {z € G :
lz| < ¢o}. Let 29 € G, si zp € S we are done, otherwise |zg| > ¢y and g = ¢; + ma;
for some x; € G. The triangle inequality m|zi| = |zo — ¢;| < |zo| + |gi] < 2|xo|. Since

m > 2, we find that |z1| < |zg|. If ;1 € S, then zy € (S). Otherwise, x; = g; + ma
and |z9| < |z1|. Continuing in this fashion |x¢| > |z1| > |z2| > ... but G has only a finite

number of elements of bounded size. 0
Proof. (Theorem implies Theorem We take g as the the Néron-Tate height on
A(K) associated to an ample divisor on A. d

Remark 5.4. (1) ”descent”
(2) All the points of bounded height can be computed.
(3) The order of A(K)/mA(K) can be effectively bounded, and hence the rank.

Theorem 5.5. Let A be an abelian variety defined over a number field K, let v be a
finite place of K at which A has good reduction. Let k be the residue field and let p be
the characteristic. Then for any m with p { m, the reduction map

A[m](K) — A(k)
18 1njective.
I'm not following the proof in [2 Thm. C.1.4.] but the one suggested in the exercise
C.9 from the same reference.

*i.e., satisfying q(P+Q + R) — q(P+ Q) — q(P + R) — ¢(Q + R) + ¢(P) + q(Q) + q(R) — ¢(0) = 0, s0
the pairing (¢(P + Q) — ¢(P) — q¢(Q) + q(0))/2 is bilinear.
8



Lemma 5.6. (Hensel’s) Let K be a p-adic field, i.e., the completion of a number field
with respect to a nonarchimedean place, let R be the ring of integers of K, and let m be a
uniformizer (a generator of the maximal ideal). Let P € R[x] and xy € R be an element
satisfying P(x9) = 0 mod m and P'(x¢) # 0 mod w, then there exists a unique x € R such
that P(z) =0 and x = x¢ mod .

Proof. We construct z as the limit of a sequence xg, 1, o, ... such that P(z;) = 0 mod 7!
and @, = T, mod 7. Write 2, = 1 + 7"y, and P(xy) =3 ai(xm1 + 7"y =
doai(xl, 1+z7rmx§nllym) mod 7 = P(xy,)+ym P (). Moreover, P'(z,,_1) = P'(zo) #

0 mod . O

Lemma 5.7. (Hensel’s lemma generalization) Let Py, ..., P, € R[y,...,xs] and Xo € R®
be an element satisfying Pi(Xo) = 0 mod 7 and such that the matriz (0P;/0x;(X,) mod )
has rank r. Then there exists a X € R® such that P,(X) =0 and X = X, mod 7.

Proof. We construct X as the limit of a sequence Xy, X7, Xs,... such that P(X;) =
0 mod #™*! and z,, = X,,,_1 mod 7. O

Proof. (of theorem [5 - From the generalization of Hensel’s Lemma we have that if A
is a variety over K and A its reduction, given P € A(R/m) a non-singular point, there
exists a point P € A(K) whose reduction is P. Then A[m] — A[m] is onto and hence an
isomorphism. In particular, it is injective and the result in the theorem holds.

O

Theorem 5.8. Let A be an abelian variety of dimension g defined over a number field
K, and fix an integer m > 2. Suppose that the m-torsion of A is K-rational. Let S be a
finite set of places of K that contains all places dividing m and all places of bad reduction
of A. Assume further that the ring of S-integers Ok s is principal. Then

rank A(K) < 2grank Oy g = 2g(r1 + 72 + |S| = 1).
Elliptic curve rank’s records

Theorem 5.9. (Mazur’s Theorem) Let E be an elliptic curve, suppose that E(Q) contains
a point of finite order m. Then either 1 < m < 10 or m = 12. More precisely, the set of
points of finite order in E(Q) forms a subgroup that has one of the following forms:
(i) A cyclic group of order N with 1 < N <10 or N = 12.
(ii) The product of a cyclic group of order two and a cyclic group of order 2N with
1< N <4,

Theorem 5.10. (Lutz-Nagell) Let E be given by y*> = 23 + Az + B with A,B € Z.
Let P = (x,y) € E(Q). Suppose P has finite order. Then x,y € Z. If y # 0 then
24A% + 2782,

Proof. (idea) If denominators the multiples do not have bounded height. O

Theorem 5.11. Let E be given by y* = (x—e1)(z—eq)(x—e3) with ey, e, e3 € Z. The map
¢: B(Q) = (Q*/Q**) & (Q*/Q*?) & (Q*/Q*?) defined by (x,y) — (x—e1,2—e2, T —¢€3)
when ) 7& 0, c0 (1717 1)7 (6170) = ((61 - 62)(61 o 63)761 — €2,€1 — 63)7 <€27O) =
(ea —e1,(e2 —e1)(ea —e3),ea —e3) and (e3,0) — (e3 —eq,e3 — eo, (63 — e1)(e3 — €2)) is a
homomorphism. The kernel of ¢ is 2E(Q).

Example 5.12. Let us consider the elliptic curve E : y? = 23 — 252. We easily find
the following rational points {co, (0,0), (5,0), (=5,0), (—4,6)}. We have that 2(—4,6) =

(%, —82219) 5o it is non-torsion. Lutz-Nagell theorem actually implies that £(Q)ers =
9
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{0, (0,0),(5,0),(=5,0)} =~ Z/2Z & Z/2Z. We will try to prove now that the rank is
actually 1 and the nontorsion points are generated by (—4,6). We have that ¢(—4,6) =
(=1,-1,1), $(0,0) = (—=1,=5,5), ¢(5,0) = (5,2, 10) and ¢(—5,0) = (=5, —10,2). Hence,
¢(—4, 6) times the previous values correspond to some points: (1,5,5), (=5, —2,10), (5, 10, 2).
If we write z = au?, x — 5 = bw? and x + 5 = cw? we have ¢(z,y) = (a,b,c). Where
a,b,c € {£1,42,+£5 +10}. Since abc is a square we can forget about c. There are 64
possibilities for (a,b). We already got 8 of them. We will eliminate the other 56. If
a < 0 it is also b, and if a > 0, also ¢ and hence b. This eliminates 32 possibilities.
One by one inspection of the remaining cases removes the other possibilities. Hence,
E(Q)/2E(Q) ~Z/2Z® 727 @ (Z/27Z)" with r = 1 since the image of ¢ has order 8. So,
finally, F(Q) ~Z/27 & /27 & 7.

6. FALTING’S THEOREM AND PROOF STRATEGY

Theorem 6.1. (Faltings) Let K be a number field, and let C'/K be a curve of genus
g > 2. Then C(K) is finite.

Conjectured by Mordell in 1922 and proved by Faltings in 1983: quite complicated tech-
niques. Vojta came up with a proof based on Diophantine Geometry. Faltings simplified
it and then Bombieri even more.

Theorem 6.2. (Vojta’s inequality) Let C /K be a smooth projective curve of genus g > 2
with C(K) # 0. There are constants k1 = £1(C) and ke = kao(g) such that if z,w € C(K)
are two points satisfying |z| > k1 and |w| > ka|z|, then (z,w) < %|z||w||§|

Proof. (Vojta’s inequality implies Falting’s Theorem) The kernel of J(K) — J(K) ® R
is the torsion group J(K)srs which is finite. In order to prove that C'(K) is finite we
will prove that its image in J(K) — J(K) ®@ R is finite. The bilinear form (-,-) makes
J(K) — J(K)®R into a finite-dimensional Euclidean space. We define the angle: 0(z,y)

as
_ =y <
cost(z,y) Zlll 0<0(x,y) <m.
We define the cone I'; g, = {x € J(K) QR | 6(x,z0) < Op}. Assume # (L0, NC(K)) =
00, then there exists z € I'y, 9, N C(K) with |z| > k; and then w € 'y g, N C(K) with
|w| > Ko|z|. Then (z,w) < 2|z||w|, or equivalently 6(z, w) > m/6. But the angle between
them is lees or equal than 26y. Then Iy »/12NC(K) is finite for all 7y € J(K) — J(K)®R.
We can cover J(K) — J(K) ® R with a finite number of this cones. So there is only a

finite number of rational points. U

How to prove Vojta’s inequality?

Some non-trivial lower and upper bounds for hg are obtained as well as ”small” enough
equations for a positive divisor in the class of 2. Roth’s Lemma is also used.

Nice survey on computing rational points | ... and another one!

7. HEIGHT BOUNDS AND HEIGHT CONJECTURES
Most important unsolved problem in Diophantine Geometry.

Conjecture 7.1. (abc, Masser-Oesterlé) For all € > 0 there exists a constant C, > 0
such that if a, b, c € Z are coprime integers satistying a + b + ¢ = 0, then

max{|al, |b], |c|} < C.(rad(abc))' ™.

3Let © be the theta divisor in J(C) who is ample and | - | the norm induce by |z|? = 7LJ7@(x). Then
we have the pairing (z,y) = 1(|z + y[® — |z[* — |y|*)
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Mochizumi 2012, Scholze and Stix 2018.
The abc-conjecture implies Falting’s Theorem, asymptotic Fermat’s Last Theorem,
Szpiro conjecture, Lang conjecture, and many others.

Proof. (abc implies asymptotic Fermat’s Last Theorem) Suppose 2P + y? + 2P = 0 for
nonzero coprime integers xz,y, z. We may assume |z| < |y| < |z|. Then the abc conjecture
implies that |z[P = max{|z|?, |y|?,|2[P} < C.(rad(zPyPz?))}Te < C.layz|'te < ClzPTe.
Hence, p — 3(1 + ¢€) < log, C.. So there is not nontrivial solution for p big enough. O

Proof. (abc implies Falting’s Theorem, Elkies) For any rational number x # 0,1, let
No(z) = Hordp(z)>0p7 Ni(z) = Hordp(x71)>0p7 Neo(z) = Hordp(x)<0p and set N(z) =
No(x)Ni(2) Ny (). We re-state the abc conjecture as N(z) > C.H(z)'™¢.

Let C/Q be a curve of genus g > 2. Belyi’s theorem says that there is a finite map
f: C — P! say of degree d, that is ramified only above the three points {0,1,00}.
Letting m := #(f71(0,1,00)) and using Riemann-Hurwitz theorem we get

20—2=-2d+(3d—m)=d—m.
We will take € < (29 — 2)/d in order to get m/d < 1 —e.

Let Dy = ZordQ(f)>0 ordo(f)(Q) and Dy = ZOrdQ(f)>O(Q)' Let dy = deg(Dp). The
divisor dyDy — dD{, has degree 0 so it is algebraically equivalent to 0 in C, and Dy is
ample, so hp, = %tho + O(\/hp,)-

Let P € C(Q) with f(P) # 0,00, a prime occurs in the numerator of f(P) if and only
if it contributes to the height Hp, (P), so No(f(P)) < Hp,(P). Then log No(f(P)) <
%y (P) + O(\/hipo (P)) = “n(f(P)) + O(/h(f(P))). We repeat the argument with 1
and oco. Noting that dj + d} + d., = m yields:

log N(f(P)) < Zh(f(P)) + O(/h(f(P))).

The abc conjecture tells us that for any € > 0 there is a constant ¢, such that log N(f(P)) >

(1—=€e)h(f(P)) —ce. Then (1 —e—2)h(f(P)) < c. and we get an upper bound for h(P).

So, there is a finite number of rational points and the bound is effective. O

The abc conjecture implies among others, the following conjectures and Roth’s theo-
rem:
Conjecture 7.2.
e (Szpiro) log |Ag/k| < (6 + €)log Fgx + C(K,€). E|
o (Frey) hi(jr) < (6 + €)log Fr x + C(K,€)

~

o (Lang) h(P) > c¢(K)log Nk /g Ap i for all non-torsion point P € E(K).
Theorem 7.3. (Roth’s theorem) For every algebraic number o and every € > 0, the

inequality | £ — o |< -~ has only finitely many rational solutions p/q € Q.
q q

8. EXERCISES
Exercise 8.1. Prove the equivalence in Definition [I.3]
Exercise 8.2. Prove equation [L.1]

Exercise 8.3. Take K = Q and S = {2,3,5} in ?7?. Take x9 = 3 = z5 = 2 and
e = 1/30. Find an x as in the theorem.
Exercise 8.4. Prove that [],, [| = [[o=[| Nx/q() [|s, -
4The conductor is FeK = HP\AE por.
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Exercise 8.5. Example with cubic field and Proposition [I.12]
Exercise 8.6. Add the details of the third point in Lemma [2.2]
Exercise 8.7. Let aq, ..., a, algebraic numbers, then

h(a; + ... + a,) < h(ay) + ... + h(a,) + logr.

Exercise 8.8. Let ¢ : P? — P? be the rational map ¢(z,y, z) = (22, y?, z2). It is defined
except at (0,0, 1).
e Take P = (z,y,2) with z,y,z € Z and ged(x,y,z) = 1. Prove that h(¢(P)) =
log max{|a?|, [y?|, |22} — log(ged(w, y*)).
e Show that there is no value ¢ such that h(¢(P)) > 2h(P) — ¢ holds for all P.
e More generally, prove that
{ h(¢(P))

h(P) . P € P*(Q) and h(P) # O}

is dense in [1, 2].

Exercise 8.9. Let a € Z be a nonzero square-free integer, and let ¢ : P! — P! be the
map ¢(z,y) = (2zy : % + ay?). Then phi*(0,1) = (0,1) + (1,0) ~ 2(0,1), so there is a
canonical height associated to ¢ and the divisor D = (0,1). Find an explicit formula for
this caninical height on P'(Q). (Hint. This one of the few rational maps on P! for which
it is possible to find a simple closed formula for the iterates ¢™).

Exercise 8.10. Let GG be an abelian group, let m > 2 an integer such that the quotient
G/mG is finite, and let 1, ..., xs € G be a complete set of coset representatives for G/mG.
Suppose that there are constants A, B,C, D > 0 with A > B (depending on G,m, and
x1,...,xs) and a function h : G — R with the property that h(mz) > A(h(z) — C) and
h(z+x;) < Bh(z)+D forallz € G and 1 <i < s. Prove that the set {z € G|h(z) < $12}
generates the group G.

Exercise 8.11. Give a bound, or even better compute exactly, the quantity # Ars(Q)
for the following elliptic curves A/Q:

(1) y* =23 — 1.

(2) y? = 2% — 4a.

(3) y? = 2° + 4x.

(4) y* + 1Tzy — 1208 = 2° — 6022

Exercise 8.12. Let C be a curve of genus g defined over F,, and let J = Jac(C') be its
Jacobian variety. For each integer m > 1, let N,,,(C') = #C(F,m) and N, (J) = #J(Fpm).
There exist algebraic integers a; such that N,,(C) = p™ + 1 — (a* + ... + ay;) for all
m > 1. Furthermore, the polynomial P(T) := [[2%,(1 — a;T) has integer coefficients and
leading coefficient p?, and it satisfies P(T) = p9T* P(1/pT). Then Nyi(J) = #J(F,) =
P(1) = [12%,(1 — a;). Prove that the first g cardinalities N,(C), No(C), ..., N,(C) for
C' determine the cardinality N;(J). In particular, prove that when g = 2, Ny(J) =
2(N1(C)* + No(C)) — p. Find a similar formula for g = 3. (Hint. Use Newton’s formulas
relating elementary symmetric polynomials to sums of powers.)

Let A be the Jacobian of the curve y? = 2° —z. Compute the torsion subgroup Ay.(Q).
(Hint. Determine the rational 2- torsion points in A(Q). Then use the first part and
reduce modulo 3 and modulo 5 to prove that A;,.s(Q) is generated by its 2-torsion and
possibly a single rational 3-torsion point. Finally, determine whether or not there is such

a 3-torsion point.)
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Exercise 8.13. For each of the following curves C'/Q, let J = Jac(C') and find as accurate
a bound as you can for the Mordell-Weil rank of J.

(1) Let C : y? = 2% — z. Find bounds for rank J(Q) and rank J(Q(i)). (Hint. Use
Theorem 5.8 and show that rank J(Q(i)) = 2rank J(Q).)

(2) Let C : 4> = 2% — 1, and let n = €>™/3 be a primitive cube root of unity. Find
bounds for rankJ(Q) and rank J(Q(n)). (Hint. Use Theorem [5.8 and show that
rank J(Q(n)) = 2rank J(Q).)

(3) Let C': y* = z(2* — 1)(2* — 4). Find a bound for rank J(Q).

Exercise 8.14. Let C/Q be the smooth projective curve birational to the affine curve
2y? = 2* — 17. This exercise sketches a proof that C(Q,) # @ for all places v of Q, yet
Cc@Q =0.

(1) Show that C has good reduction at all primes except 2 and 17, and that C(IF,)
contains a nonsingular point for every prime p. Conclude that C(Q,) # 0 for all
primes p. (Hint. Use Weil’s estimate (Exercise to get points modulo p, and
then Hensel’s lemma to lift them to p-adic points.)

(2) Check that C'(R) # 0.

(3) Show that the two points at infinity on C' are not rational over Q.

(4) Suppose that C(Q) contained a point. Prove that there would then exist coprime
integers a, b, ¢ satisfying a* — 17b* = 2¢%.

(5) Let a,b,c be as before. Prove that ¢ is a square modulo 17. (Hint. For odd p
dividing ¢, use the fact that p is a square modulo 17 if and only if 17 is a square
modulo p.) Conclude that 2 is a 4th power modulo 17. This contradiction implies

that C'(Q) = 0.

Exercise 8.15. Let C' be the smooth projective curve with affine open subset U defined
by y* +y = 2°, let Py = (0,0), let P, = (0,—1), and let P,, denote the point at infinity.
Consider the Jacobian variety J of C' and the natural embedding j : C' — J defined by
mapping P to the divisor class of (P) — (Px).

(1) It turns out that rank J(Q) = 0. Assuming this, prove that J(Q) ~ Z/5Z.

(2) Prove that j(Py) = 4j(R).

(3) Prove that 25(Fp), 3j(Fy) ¢ j(C).

(4) Conclude that C(Q) = { P, P1, P }-

(5) Use this exercise to prove Fermat’s Last Theorem for exponent p = 5. (Hint. Use
the fact that if A°>+D5 = B® with D # 0, then (z,y) = (AB/D?* A°/D%) € C(Q).)

Exercise 8.16. (1) Let £/Q be an elliptic curve, let A and Ng be respectively the
minimal discriminant and conductor of E/Q, and write 1728Af = ¢} —c2 as usual.
(See, e.g., [3, Section II1.1]). Apply the abc conjecture to this equality (suitably
divided by a ged) to prove that max{|Deltag|, |c3], |c2|} < C.NZte. Deduce that
the abc conjecture implies Szpiro’s conjecture and Frey’s conjecture.

(2) Let a,b, and ¢ be coprime integers satisfying a + b+ ¢ = 0 and 24 divides abc.
Consider the elliptic curve E,3. : y* = x(z — a)(z + b). Prove that Ag,, =
(27%abc)? and j(Eap.) = 28(a® + ab + b%)/(abc)?.

(3) Prove that Frey’s conjecture implies that the abc conjecture is true. (Hint. Apply
Frey’s conjecture to the curve E, )

(4) Consider the elliptic the curve E], , : y* = 2* — 2(a — b)z* + (a + b)*x. Prove
that ), ., has discriminant 2°abc*. Verify that the map Eqp. — El, . : (2,y) —

(y?/2%, —y(ab + x?)/x?), is an isogeny of degree 2. Use these facts to show that

Szpiro’s conjecture implies the abc conjecture with the weaker exponents 6/5 + €.
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