Singularity in Algebraic Geometry

Jungkai Alfred Chen National Taiwan Universty

2021/11/11

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Algebraic varieties are objects locally defined by zero locus of polynomial.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

For simplicity, let us assume that we are working over \mathbb{C} .

Algebraic varieties are objects locally defined by zero locus of polynomial.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For simplicity, let us assume that we are working over \mathbb{C} .

Example Plane curve $C = (f(x, y) = 0) \subset \mathbb{A}^2$.

1.
$$C_1$$
 is defined by $f(x, y) = y^2 - x^2 - x^3$.

Algebraic varieties are objects locally defined by zero locus of polynomial.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

For simplicity, let us assume that we are working over \mathbb{C} .

Example

Plane curve
$$C = (f(x, y) = 0) \subset \mathbb{A}^2$$
.

- 1. C_1 is defined by $f(x, y) = y^2 x^2 x^3$.
- 2. C_2 is defined by $f(x, y) = y^2 x^3$.

Definition Given a hypersurface $X = (f(x_1, ..., x_n) = 0) \subset \mathbb{A}^n$,

Definition Given a hypersurface $X = (f(x_1, ..., x_n) = 0) \subset \mathbb{A}^n$,

 $o \in X$ is singular if

$$\frac{\partial f}{\partial x_i}|_o = 0, \forall i.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Definition

Suppose that $X = (f_1 = f_2 = ... = f_r = 0) \subset \mathbb{A}^n$ is an affine variety of dimension m. X is singular at $o \in X$ if

$$rk((\frac{\partial f_j}{\partial x_i}|_o)_{ij}) < n-m.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

One can define blowup a smooth point in $o \in \mathbb{A}^2$, $\pi : Y \subset \mathbb{A}^2 \times \mathbb{P}^1 \to \mathbb{A}^2$ so that

One can define blowup a smooth point in $o \in \mathbb{A}^2$, $\pi : Y \subset \mathbb{A}^2 \times \mathbb{P}^1 \to \mathbb{A}^2$ so that

1.
$$E \subset \mathbb{P}^1 = \pi^{-1}(o);$$

One can define blowup a smooth point in $o \in \mathbb{A}^2$, $\pi : Y \subset \mathbb{A}^2 \times \mathbb{P}^1 \to \mathbb{A}^2$ so that

1.
$$E \subset \mathbb{P}^1 = \pi^{-1}(o);$$

2.
$$\pi: Y - E \rightarrow \mathbb{A}^2 - \{o\}$$
 is isomorphic;

One can define blowup a smooth point in $o \in \mathbb{A}^2$, $\pi : Y \subset \mathbb{A}^2 \times \mathbb{P}^1 \to \mathbb{A}^2$ so that

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1.
$$E \subset \mathbb{P}^1 = \pi^{-1}(o);$$

2. $\pi: \mathbf{Y} - \mathbf{E} \to \mathbb{A}^2 - \{o\}$ is isomorphic;

3. $E^2 = -1;$

One can define blowup a smooth point in $o \in \mathbb{A}^2$, $\pi : Y \subset \mathbb{A}^2 \times \mathbb{P}^1 \to \mathbb{A}^2$ so that

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1.
$$E \subset \mathbb{P}^1 = \pi^{-1}(o);$$

2. $\pi: Y - E \rightarrow \mathbb{A}^2 - \{o\}$ is isomorphic;

3. $E^2 = -1;$

4.
$$K_Y = \pi^* K_{\mathbb{A}^2} + E$$
.

 $\Upsilon \subset (A^2 \times [P])$ $(\chi, \chi) [z_0, z_1]$ $Y = V(x_{z_1} - y_{z_0})$ or $Y = \{(x, y), (z_1, z_1) \mid (x, y) = (z_1 + z_1)\}$ $|\Delta^2$

Example

We have the following surface singularities. How can we compare their complexity?

Example

We have the following surface singularities. How can we compare their complexity?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1. S_1 defined by $f(x, y) = x^2 + y^2 + z^2$;

Example

We have the following surface singularities. How can we compare their complexity?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 1. S_1 defined by $f(x, y) = x^2 + y^2 + z^2$;
- 2. S_2 defined by $f(x, y) = x^2 + y^2 + z^5$;

Example

We have the following surface singularities. How can we compare their complexity?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 1. S_1 defined by $f(x, y) = x^2 + y^2 + z^2$;
- 2. S_2 defined by $f(x, y) = x^2 + y^2 + z^5$;
- 3. S_3 defined by $f(x, y) = x^3 + y^3 + z^3$.

 $E \cong \text{elliptic surve (cubic in } \mathbb{P}^2)$

We have the following another main sources of singularities.

Definition

Consider \mathbb{A}^2 with coordinate $\{x, y\}$.

We have the following another main sources of singularities.

Definition

Consider \mathbb{A}^2 with coordinate $\{x, y\}$.

Consider a group action $\mathbb{Z}/r\mathbb{Z}$ on \mathbb{A}^2 by $\sigma(x, y) = (\zeta^a x, \zeta^b y)$.

We have the following another main sources of singularities.

Definition

Consider \mathbb{A}^2 with coordinate $\{x, y\}$.

Consider a group action $\mathbb{Z}/r\mathbb{Z}$ on \mathbb{A}^2 by $\sigma(x, y) = (\zeta^a x, \zeta^b y)$.

Let X be the quotient space, together with $\pi : \mathbb{A}^2 \to X$.

We have the following another main sources of singularities. Definition Consider \mathbb{A}^2 with coordinate $\{x, y\}$.

Consider a group action $\mathbb{Z}/r\mathbb{Z}$ on \mathbb{A}^2 by $\sigma(x, y) = (\zeta^a x, \zeta^b y)$.

(ロ) (同) (三) (三) (三) (○) (○)

Let X be the quotient space, together with $\pi : \mathbb{A}^2 \to X$.

The image of $o \in X$ is singular of type $\frac{1}{r}(a, b)$.

We have the following another main sources of singularities. Definition Consider \mathbb{A}^2 with coordinate $\{x, y\}$.

Consider a group action $\mathbb{Z}/r\mathbb{Z}$ on \mathbb{A}^2 by $\sigma(x, y) = (\zeta^a x, \zeta^b y)$.

(ロ) (同) (三) (三) (三) (○) (○)

Let X be the quotient space, together with $\pi : \mathbb{A}^2 \to X$.

The image of $o \in X$ is singular of type $\frac{1}{r}(a, b)$.

Example We have the following examples.

We have the following another main sources of singularities. Definition Consider \mathbb{A}^2 with coordinate $\{x, y\}$.

Consider a group action $\mathbb{Z}/r\mathbb{Z}$ on \mathbb{A}^2 by $\sigma(x, y) = (\zeta^a x, \zeta^b y)$.

Let X be the quotient space, together with $\pi : \mathbb{A}^2 \to X$.

The image of $o \in X$ is singular of type $\frac{1}{r}(a, b)$.

Example

We have the following examples.

1. S_4 is a quotient singularity of type $\frac{1}{2}(1, 1)$. This singularity is actually isomorphic to S_1 .

We have the following another main sources of singularities. Definition Consider \mathbb{A}^2 with coordinate $\{x, y\}$.

Consider a group action $\mathbb{Z}/r\mathbb{Z}$ on \mathbb{A}^2 by $\sigma(x, y) = (\zeta^a x, \zeta^b y)$.

Let X be the quotient space, together with $\pi : \mathbb{A}^2 \to X$.

The image of $o \in X$ is singular of type $\frac{1}{r}(a, b)$.

Example

We have the following examples.

1. S_4 is a quotient singularity of type $\frac{1}{2}(1,1)$. This singularity is actually isomorphic to S_1 .

- ロト・日本・日本・日本・日本・日本

2. S_5 is a quotient singularity of type $\frac{1}{5}(1,4)$.

We have the following another main sources of singularities. Definition Consider \mathbb{A}^2 with coordinate $\{x, y\}$.

Consider a group action $\mathbb{Z}/r\mathbb{Z}$ on \mathbb{A}^2 by $\sigma(x, y) = (\zeta^a x, \zeta^b y)$.

Let X be the quotient space, together with $\pi : \mathbb{A}^2 \to X$.

The image of $o \in X$ is singular of type $\frac{1}{r}(a, b)$.

Example

We have the following examples.

1. S_4 is a quotient singularity of type $\frac{1}{2}(1,1)$. This singularity is actually isomorphic to S_1 .

- ロト・日本・日本・日本・日本・日本

2. S_5 is a quotient singularity of type $\frac{1}{5}(1,4)$.

Degeneration of varieties

Degeneration of varieties

Example $X_1 \subset \mathbb{A}^3$ defined by $y^2 - t_1 x - x^2 - x^3$.

Degeneration of varieties

Example $X_1 \subset \mathbb{A}^3$ defined by $y^2 - t_1 x - x^2 - x^3$.

Example $X_2 \subset \mathbb{A}^4$ defined by $y^2 - t_1 x - t_2 x^2 - x^3$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Minimal Model Program

Minimal Model Program

Theorem

Let *S* be a smooth non-rational surface. By contracting at most finitely many (-1) curves, one obtain a smooth surface S_0 without (-1) curve, which we call a minimal surface.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Minimal Model Program

Theorem

Let S be a smooth non-rational surface. By contracting at most finitely many (-1) curves, one obtain a smooth surface S_0 without (-1) curve, which we call a minimal surface.

Theorem (Mori)

Let X be a smooth projective threefold. There is a sequence of birational maps

$$X \to X_1 \to \ldots \to X_n$$

such that either X_n is a minimal model, or X_n admits a Mori fiber space.

(ロ) (同) (三) (三) (三) (○) (○)

Minimal Model Program

Theorem

Let *S* be a smooth non-rational surface. By contracting at most finitely many (-1) curves, one obtain a smooth surface S_0 without (-1) curve, which we call a minimal surface.

Theorem (Mori)

Let X be a smooth projective threefold. There is a sequence of birational maps

$$X \to X_1 \to \ldots \to X_n$$

such that either X_n is a minimal model, or X_n admits a Mori fiber space.

However, we need to allow "mild" singularities (terminal singularities indeed) in order for the above program to work.

Complexity of Singularities

Definition

Let X be a possibly singular variety. Let $\pi : Y \to X$ be a resolution. We can compare $K_Y = \pi^* K_X + \sum a_i E_i$. Then X is said to be

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>
Definition

Let X be a possibly singular variety. Let $\pi : Y \to X$ be a resolution. We can compare $K_Y = \pi^* K_X + \sum a_i E_i$. Then X is said to be

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition

Let X be a possibly singular variety. Let $\pi : Y \to X$ be a resolution. We can compare $K_Y = \pi^* K_X + \sum a_i E_i$. Then X is said to be

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1. terminal if $a_i > 0$ for all *i*;

Definition

Let X be a possibly singular variety. Let $\pi : Y \to X$ be a resolution. We can compare $K_Y = \pi^* K_X + \sum a_i E_i$. Then X is said to be

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. terminal if $a_i > 0$ for all *i*;
- **2**. canonical if $a_i \ge 0$ for all *i*;

Definition

Let X be a possibly singular variety. Let $\pi : Y \to X$ be a resolution. We can compare $K_Y = \pi^* K_X + \sum a_i E_i$. Then X is said to be

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. terminal if $a_i > 0$ for all *i*;
- 2. canonical if $a_i \ge 0$ for all *i*;
- 3. klt if $a_i > -1$ for all *i*;

Definition

Let X be a possibly singular variety. Let $\pi : Y \to X$ be a resolution. We can compare $K_Y = \pi^* K_X + \sum a_i E_i$. Then X is said to be

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. terminal if $a_i > 0$ for all *i*;
- 2. canonical if $a_i \ge 0$ for all *i*;
- 3. klt if $a_i > -1$ for all *i*;
- 4. Ic if $a_i \ge -1$ for all *i*.

Let $o \in X$ be possibly singular point in a surface. A neighborhood of $o \in X$ is called a "germ of singularity".

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let $o \in X$ be possibly singular point in a surface. A neighborhood of $o \in X$ is called a "germ of singularity".

The $o \in X$ is terminal if and only if $o \in X$ is non-singular.

The following are equivalent:

The following are equivalent:

The following are equivalent:

1. $o \in X$ is canonical;

The following are equivalent:

- 1. $o \in X$ is canonical;
- **2.** $o \in X$ is Du Val;

The following are equivalent:

- 1. $o \in X$ is canonical;
- **2**. $o \in X$ is Du Val;
- 3. $o \in X$ is a singularity with Dynkin diagram A-D-E.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The following are equivalent:

- 1. $o \in X$ is canonical;
- **2**. $o \in X$ is Du Val;
- 3. $o \in X$ is a singularity with Dynkin diagram A-D-E.

(ロ) (同) (三) (三) (三) (○) (○)

Where A-D-E singularities are given by:

The following are equivalent:

- 1. $o \in X$ is canonical;
- **2**. $o \in X$ is Du Val;
- 3. $o \in X$ is a singularity with Dynkin diagram A-D-E.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Where A-D-E singularities are given by:

1. A_n is given by $x^2 + y^2 + z^{n+1}$ (with $n \ge 1$);

The following are equivalent:

- 1. $o \in X$ is canonical;
- **2**. $o \in X$ is Du Val;
- 3. $o \in X$ is a singularity with Dynkin diagram A-D-E.

Where A-D-E singularities are given by:

- 1. A_n is given by $x^2 + y^2 + z^{n+1}$ (with $n \ge 1$);
- 2. D_n is given by $x^2 + y^2 z + z^{n-1}$ (with $n \ge 3$);

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The following are equivalent:

- 1. $o \in X$ is canonical;
- **2**. $o \in X$ is Du Val;
- 3. $o \in X$ is a singularity with Dynkin diagram A-D-E.

Where A-D-E singularities are given by:

- 1. A_n is given by $x^2 + y^2 + z^{n+1}$ (with $n \ge 1$);
- 2. D_n is given by $x^2 + y^2 z + z^{n-1}$ (with $n \ge 3$);

(ロ) (同) (三) (三) (三) (○) (○)

3. E_6 is given by $x^2 + y^3 + z^4$;

The following are equivalent:

- 1. $o \in X$ is canonical;
- **2**. $o \in X$ is Du Val;
- 3. $o \in X$ is a singularity with Dynkin diagram A-D-E.

Where A-D-E singularities are given by:

- 1. A_n is given by $x^2 + y^2 + z^{n+1}$ (with $n \ge 1$);
- 2. D_n is given by $x^2 + y^2 z + z^{n-1}$ (with $n \ge 3$);

- 3. E_6 is given by $x^2 + y^3 + z^4$;
- 4. E_7 is given by $x^2 + y^3 + yz^3$;

The following are equivalent:

- 1. $o \in X$ is canonical;
- **2**. $o \in X$ is Du Val;

3. $o \in X$ is a singularity with Dynkin diagram A-D-E.

Where A-D-E singularities are given by:

- 1. A_n is given by $x^2 + y^2 + z^{n+1}$ (with $n \ge 1$);
- 2. D_n is given by $x^2 + y^2 z + z^{n-1}$ (with $n \ge 3$);

- 3. E_6 is given by $x^2 + y^3 + z^4$;
- 4. E_7 is given by $x^2 + y^3 + yz^3$;
- 5. E_8 is given by $x^2 + y^3 + z^5$.

If $o \in X$ is an isolated cDV point and Gorenstein.

If $o \in X$ is an isolated cDV point and Gorenstein.

1. *cA*:
$$(xy + z^{n+1} + ug(x, y, z, u) = 0) \in \mathbb{C}^4$$
.

If $o \in X$ is an isolated cDV point and Gorenstein.

1. *cA*:
$$(xy + z^{n+1} + ug(x, y, z, u) = 0) \in \mathbb{C}^4$$
.

2. cD:
$$(x^2 + y^2z + z^{n-1} + ug(x, y, z, u) = 0) \in \mathbb{C}^4$$
.

If $o \in X$ is an isolated cDV point and Gorenstein.

1. *cA*:
$$(xy + z^{n+1} + ug(x, y, z, u) = 0) \in \mathbb{C}^4$$
.

2. cD:
$$(x^2 + y^2z + z^{n-1} + ug(x, y, z, u) = 0) \in \mathbb{C}^4$$
.

3.
$$cE_6$$
: $(x^2 + y^3 + z^4 + ug(x, y, z, u) = 0) \in \mathbb{C}^4$.

If $o \in X$ is an isolated cDV point and Gorenstein.

1.
$$cA: (xy + z^{n+1} + ug(x, y, z, u) = 0) \in \mathbb{C}^4.$$

2. cD:
$$(x^2 + y^2z + z^{n-1} + ug(x, y, z, u) = 0) \in \mathbb{C}^4$$
.

3.
$$cE_6$$
: $(x^2 + y^3 + z^4 + ug(x, y, z, u) = 0) \in \mathbb{C}^4$.

4.
$$cE_7$$
: $(x^2 + y^3 + yz^3 + ug(x, y, z, u) = 0) \in \mathbb{C}^4$.

If $o \in X$ is an isolated cDV point and Gorenstein.

1. *cA*:
$$(xy + z^{n+1} + ug(x, y, z, u) = 0) \in \mathbb{C}^4$$
.

2. cD:
$$(x^2 + y^2z + z^{n-1} + ug(x, y, z, u) = 0) \in \mathbb{C}^4$$
.

- 3. cE_6 : $(x^2 + y^3 + z^4 + ug(x, y, z, u) = 0) \in \mathbb{C}^4$.
- 4. cE_7 : $(x^2 + y^3 + yz^3 + ug(x, y, z, u) = 0) \in \mathbb{C}^4$.
- 5. cE_8 : $(x^2 + y^3 + z^5 + ug(x, y, z, u) = 0) \in \mathbb{C}^4$.

 $o \in X$ is a quotient of a smooth or an isolated cDV point.

 $o \in X$ is a quotient of a smooth or an isolated cDV point.

1.
$$\mathbb{C}^3/\frac{1}{r}(a,r-a,1) \cong \mathbb{C}^3/\frac{1}{r}(1,-1,b), (r,a) = (r,b) = 1.$$

 $o \in X$ is a quotient of a smooth or an isolated cDV point.

1.
$$\mathbb{C}^3/\frac{1}{r}(a,r-a,1) \cong \mathbb{C}^3/\frac{1}{r}(1,-1,b), (r,a) = (r,b) = 1.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

2. cA/r: $(xy + f(z, u) = 0) \in \mathbb{C}^4 / \frac{1}{r}(a, r - a, 1, r)$.

 $o \in X$ is a quotient of a smooth or an isolated cDV point.

1.
$$\mathbb{C}^3/\frac{1}{r}(a,r-a,1) \cong \mathbb{C}^3/\frac{1}{r}(1,-1,b), (r,a) = (r,b) = 1.$$

2.
$$cA/r$$
: $(xy + f(z, u) = 0) \in \mathbb{C}^4/\frac{1}{r}(a, r - a, 1, r)$.

3.
$$cAx/2$$
: $(x^2 + y^2 + f(z, u) = 0) \in \mathbb{C}^4/\frac{1}{2}(1, 0, 1, 0)$.

 $o \in X$ is a quotient of a smooth or an isolated cDV point.

1.
$$\mathbb{C}^3/\frac{1}{r}(a,r-a,1) \cong \mathbb{C}^3/\frac{1}{r}(1,-1,b), (r,a) = (r,b) = 1.$$

2.
$$cA/r$$
: $(xy + f(z, u) = 0) \in \mathbb{C}^4/\frac{1}{r}(a, r - a, 1, r)$.

3.
$$cAx/2$$
: $(x^2 + y^2 + f(z, u) = 0) \in \mathbb{C}^4/\frac{1}{2}(1, 0, 1, 0)$.

4.
$$cAx/4$$
: $(x^2 + y^2 + f(z, u) = 0) \in \mathbb{C}^4/\frac{1}{4}(1, 3, 1, 2)$.

 $o \in X$ is a quotient of a smooth or an isolated cDV point.

1.
$$\mathbb{C}^3/\frac{1}{r}(a,r-a,1) \cong \mathbb{C}^3/\frac{1}{r}(1,-1,b), (r,a) = (r,b) = 1.$$

2.
$$cA/r$$
: $(xy + f(z, u) = 0) \in \mathbb{C}^4/\frac{1}{r}(a, r - a, 1, r)$.

3.
$$cAx/2$$
: $(x^2 + y^2 + f(z, u) = 0) \in \mathbb{C}^4/\frac{1}{2}(1, 0, 1, 0)$.

4.
$$cAx/4$$
: $(x^2 + y^2 + f(z, u) = 0) \in \mathbb{C}^4/\frac{1}{4}(1, 3, 1, 2)$.

5. cD/2: $P \in X$ is given by $(\varphi = 0) \subset \mathbb{C}^4/\frac{1}{2}(1, 1, 0, 1)$ with φ being certain cD type.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $o \in X$ is a quotient of a smooth or an isolated cDV point.

1.
$$\mathbb{C}^3/\frac{1}{r}(a,r-a,1) \cong \mathbb{C}^3/\frac{1}{r}(1,-1,b), (r,a) = (r,b) = 1.$$

2.
$$cA/r$$
: $(xy + f(z, u) = 0) \in \mathbb{C}^4/\frac{1}{r}(a, r - a, 1, r)$.

3.
$$cAx/2$$
: $(x^2 + y^2 + f(z, u) = 0) \in \mathbb{C}^4/\frac{1}{2}(1, 0, 1, 0)$.

4.
$$cAx/4$$
: $(x^2 + y^2 + f(z, u) = 0) \in \mathbb{C}^4/\frac{1}{4}(1, 3, 1, 2).$

- 5. cD/2: $P \in X$ is given by $(\varphi = 0) \subset \mathbb{C}^4/\frac{1}{2}(1, 1, 0, 1)$ with φ being certain cD type.
- cD/3: P ∈ X is given as (φ = 0) ⊂ C⁴/¹/₃(0, 2, 1, 1) with φ being certain cD type.

 $o \in X$ is a quotient of a smooth or an isolated cDV point.

1.
$$\mathbb{C}^3/\frac{1}{r}(a,r-a,1) \cong \mathbb{C}^3/\frac{1}{r}(1,-1,b), (r,a) = (r,b) = 1.$$

2.
$$cA/r$$
: $(xy + f(z, u) = 0) \in \mathbb{C}^4/\frac{1}{r}(a, r - a, 1, r)$.

3.
$$cAx/2$$
: $(x^2 + y^2 + f(z, u) = 0) \in \mathbb{C}^4/\frac{1}{2}(1, 0, 1, 0)$.

4.
$$cAx/4$$
: $(x^2 + y^2 + f(z, u) = 0) \in \mathbb{C}^4/\frac{1}{4}(1, 3, 1, 2)$.

- 5. cD/2: $P \in X$ is given by $(\varphi = 0) \subset \mathbb{C}^4/\frac{1}{2}(1, 1, 0, 1)$ with φ being certain cD type.
- 6. cD/3: $P \in X$ is given as $(\varphi = 0) \subset \mathbb{C}^4/\frac{1}{3}(0, 2, 1, 1)$ with φ being certain cD type.

7.
$$cE/2$$
: $(x^2 + y^3 + yg(z, u) + h(z, u) = 0) \in \mathbb{C}^4/\frac{1}{2}(1, 0, 1, 1)$.

Further Studies and Developments

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Further Studies and Developments

method of toric varieties for quotient singularities;

Further Studies and Developments

- method of toric varieties for quotient singularities;
- singularities of pairs (X, △), where △ is a divisor (or Q-divisor, ℝ-divisor) on X;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ
Further Studies and Developments

- method of toric varieties for quotient singularities;
- Singularities of pairs (X, △), where △ is a divisor (or Q-divisor, ℝ-divisor) on X;

(日) (日) (日) (日) (日) (日) (日)

singularities in positive characteristic.

Thank you!