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Getting Start

Algebraic varieties are objects locally defined by zero locus of
polynomial.
For simplicity, let us assume that we are working over C.

Example
Plane curve C = (f (x , y) = 0) ⊂ A2.

1. C1 is defined by f (x , y) = y2 − x2 − x3.

2. C2 is defined by f (x , y) = y2 − x3.
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Definition
Given a hypersurface X = (f (x1, ..., xn) = 0) ⊂ An,

o ∈ X is singular if

∂f
∂xi
|o = 0,∀i .
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Getting Start

Definition
Suppose that X = (f1 = f2 = ... = fr = 0) ⊂ An is an affine
variety of dimension m.
X is singular at o ∈ X if

rk
(
(
∂fj
∂xi
|o)ij
)
< n −m.



Resolution of Singularities

One can define blowup a smooth point in o ∈ A2,
π : Y ⊂ A2 × P1 → A2 so that

1. E ⊂ P1 = π−1(o);

2. π : Y − E → A2 − {o} is isomorphic;

3. E2 = −1;

4. KY = π∗KA2 + E .
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Resolution of Singularities

Example
We have the following surface singularities. How can we
compare their complexity?

1. S1 defined by f (x , y) = x2 + y2 + z2;

2. S2 defined by f (x , y) = x2 + y2 + z5;

3. S3 defined by f (x , y) = x3 + y3 + z3.
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Quotient Singularity
We have the following another main sources of singularities.

Definition
Consider A2 with coordinate {x , y}.

Consider a group action Z/rZ on A2 by σ(x , y) = (ζax , ζby).

Let X be the quotient space, together with π : A2 → X.

The image of o ∈ X is singular of type 1
r (a,b).

Example
We have the following examples.

1. S4 is a quotient singularity of type 1
2(1,1). This singularity

is actually isomorphic to S1.

2. S5 is a quotient singularity of type 1
5(1,4).

3. S6 is a quotient singularity of type 1
5(1,1).
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Why Singularities

Degeneration of varieties

Example
X1 ⊂ A3 defined by y2 − t1x − x2 − x3.

Example
X2 ⊂ A4 defined by y2 − t1x − t2x2 − x3.
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Why Singularities
Minimal Model Program

Theorem
Let S be a smooth non-rational surface. By contracting at most
finitely many (−1) curves, one obtain a smooth surface S0
without (−1) curve, which we call a minimal surface.

Theorem (Mori)
Let X be a smooth projective threefold. There is a sequence of
birational maps

X → X1 → . . .→ Xn

such that either Xn is a minimal model, or Xn admits a Mori fiber
space.

However, we need to allow ”mild” singularities (terminal
singularities indeed) in order for the above program to work.
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Complexity of Singularities

Definition
Let X be a possibly singular variety. Let π : Y → X be a
resolution. We can compare KY = π∗KX +

∑
aiEi . Then X is

said to be

1. terminal if ai > 0 for all i ;

2. canonical if ai ≥ 0 for all i ;

3. klt if ai > −1 for all i ;

4. lc if ai ≥ −1 for all i .
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Surface Singularities
The following are equivalent:

1. o ∈ X is canonical;

2. o ∈ X is Du Val;

3. o ∈ X is a singularity with Dynkin diagram A-D-E .

Where A-D-E singularities are given by:

1. An is given by x2 + y2 + zn+1 (with n ≥ 1);

2. Dn is given by x2 + y2z + zn−1 (with n ≥ 3);

3. E6 is given by x2 + y3 + z4;

4. E7 is given by x2 + y3 + yz3;

5. E8 is given by x2 + y3 + z5.
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Threefold Terminal Singularities

If o ∈ X is an isolated cDV point and Gorenstein.

1. cA: (xy + zn+1 + ug(x , y , z,u) = 0) ∈ C4.

2. cD: (x2 + y2z + zn−1 + ug(x , y , z,u) = 0) ∈ C4.

3. cE6: (x2 + y3 + z4 + ug(x , y , z,u) = 0) ∈ C4.

4. cE7: (x2 + y3 + yz3 + ug(x , y , z,u) = 0) ∈ C4.

5. cE8: (x2 + y3 + z5 + ug(x , y , z,u) = 0) ∈ C4.
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Threefold Terminal Singularities
o ∈ X is a quotient of a smooth or an isolated cDV point.

1. C3/1
r (a, r − a,1) ∼= C3/1

r (1,−1,b), (r ,a) = (r ,b) = 1.
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Further Studies and Developments

I method of toric varieties for quotient singularities;

I singularities of pairs (X ,∆), where ∆ is a divisor (or
Q-divisor, R-divisor) on X ;
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Thank you!




