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Getting Start

Definition

Suppose that X = (fy = b = ... = f, = 0) C A" is an affine
variety of dimension m.

X is singular at o € X if

of;
rk((a—;b),-j) <n-m.

]



Resolution of Singularities

One can define blowup a smooth point in 0 € A?,
7:Y C A% x P! — A? so that



Resolution of Singularities

One can define blowup a smooth point in 0 € A2,
7:Y C A% x P! — A? so that

1. ECP'=7"0);



Resolution of Singularities

One can define blowup a smooth point in 0 € A2,
7:Y C A% x P! — A? so that

1. ECP'=7""(0);

2. m:Y —E — A% — {0} is isomorphic;



Resolution of Singularities

One can define blowup a smooth point in 0 € A2,
7:Y C A% x P! — A? so that

1. ECP'=7"0);
2. m:Y —E — A% — {0} is isomorphic;

3. E2=—1;



Resolution of Singularities

One can define blowup a smooth point in 0 € A2,
7:Y C A% x P! — A? so that

1. ECP'=7""(0);
2. m:Y —E — A% — {0} is isomorphic;
3. E2=—1;

4. Ky ="Ky + E.
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Resolution of Singularities

Example

We have the following surface singularities. How can we
compare their complexity?

1. S; defined by f(x,y) = x2 + y2 + z2;
2. S, defined by f(x,y) = x° + y? + 2°;

3. S defined by f(x,y) = x3 + y3 + Z°.
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Degeneration of varieties

Example
X; C A3 defined by y? — tjx — x> — x3.

Example
Xo C A* defined by y° — tix — tox® — x5.
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Why Singularities

Minimal Model Program

Theorem

Let S be a smooth non-rational surface. By contracting at most
finitely many (—1) curves, one obtain a smooth surface Sy
without (—1) curve, which we call a minimal surface.

Theorem (Mori)

Let X be a smooth projective threefold. There is a sequence of
birational maps
X—=>Xi—>...=> X,

such that either X, is a minimal model, or X, admits a Mori fiber
space.

However, we need to allow "mild” singularities (terminal
singularities indeed) in order for the above program to work.
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Complexity of Singularities

Definition
Let X be a possibly singular variety. Letw: Y — X be a
resolution. We can compare Ky = m*Kx + >_ a;E;. Then X is
said to be

1. terminal if a; > 0 for all i;

2. canonical ifa; > 0 for all i;

3. Kkitifa; > —1 for all i;

4. Icifa; > —1 forall i.
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The o € X is terminal if and only if o € X is non-singular.
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Surface Singularities
The following are equivalent:
1. 0 € X is canonical;
2. o€ Xis Du Val;
3. o0 € X is a singularity with Dynkin diagram A-D-E.
Where A-D-E singularities are given by:
1. Apis given by x2 + y? + z™"1 (with n > 1);

2. Dyis given by x? + y2z + z"1 (with n > 3);

w

. Egis given by x2 + y8 + 7%;

SN

. E7is given by x2 + y3 + yz5;

5. Egis given by x2 + y3 + 25.
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Threefold Terminal Singularities

If o € X is an isolated cDV point and Gorenstein.

1.

2.

CA: (xy + 2™ +ug(x,y,z,u) =0) € C*.
eD: (x® + y?z+2"" + ug(x,y,z,u) =0) € C*.

cEs: (x> + y3 + 2* + ug(x,y, z,u) = 0) € C*.

. CE7: (X° + y3 + yZ8 + ug(x,y,z,u) = 0) € C*.

cEg: (X2 +y3 4+ 25 + ug(x,y,z,u) =0) € C*.
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o € X is a quotient of a smooth or an isolated cDV point.

1.

c3/Ya,r—a1)=C3/1(1,-1,b), (r,a) = (r,b) = 1.

. CA/r: (xy + f(z,u) =0) e C*/1(a,r — a,1,r).

oAx/2: (X2 + y? + f(2,u) = 0) € C4/1(1,0,1,0).

| CAX/4: (X2 + y2 + f(z,u) = 0) € C*/1(1,3,1,2),

cD/2: P € X is given by (¢ = 0)  C*/%(1,1,0,1) with ¢
being certain ¢D type.

cD/3: P € X is given as (p = 0)  C*/1(0,2,1,1) with ¢
being certain cD type.

CE/2: (X2 + y® + yg(z,u) + h(z,u) = 0) € C*/%(1,0,1,1).
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Further Studies and Developments

» method of toric varieties for quotient singularities;

» singularities of pairs (X, A), where A is a divisor (or
Q-divisor, R-divisor) on X;

» singularities in positive characteristic.



Thank you!





