Singularity in Algebraic Geometry

Jungkai Alfred Chen
National Taiwan Universty

2021/11/11

Getting Start

Algebraic varieties are objects locally defined by zero locus of polynomial.
For simplicity, let us assume that we are working over \mathbb{C}.

Getting Start

Algebraic varieties are objects locally defined by zero locus of polynomial.
For simplicity, let us assume that we are working over \mathbb{C}.

Example

 Plane curve $C=(f(x, y)=0) \subset \mathbb{A}^{2}$.1. C_{1} is defined by $f(x, y)=y^{2}-x^{2}-x^{3}$.

Getting Start

Algebraic varieties are objects locally defined by zero locus of polynomial.
For simplicity, let us assume that we are working over \mathbb{C}.

Example

 Plane curve $C=(f(x, y)=0) \subset \mathbb{A}^{2}$.1. C_{1} is defined by $f(x, y)=y^{2}-x^{2}-x^{3}$.
2. C_{2} is defined by $f(x, y)=y^{2}-x^{3}$.

$$
C_{1} \quad y^{2}-x^{2}-x^{3}
$$

$$
C_{2} \quad y^{2} \cdot x^{3}
$$

Getting Start

Definition
Given a hypersurface $X=\left(f\left(x_{1}, \ldots, x_{n}\right)=0\right) \subset \mathbb{A}^{n}$,

Getting Start

Definition
Given a hypersurface $X=\left(f\left(x_{1}, \ldots, x_{n}\right)=0\right) \subset \mathbb{A}^{n}$,
$o \in X$ is singular if

$$
\left.\frac{\partial f}{\partial x_{i}}\right|_{o}=0, \forall i
$$

Getting Start

Definition

Suppose that $X=\left(f_{1}=f_{2}=\ldots=f_{r}=0\right) \subset \mathbb{A}^{n}$ is an affine variety of dimension m.
X is singular at $o \in X$ if

$$
r k\left(\left(\left.\frac{\partial f_{j}}{\partial x_{i}}\right|_{o}\right)_{i j}\right)<n-m
$$

Resolution of Singularities

One can define blowup a smooth point in $o \in \mathbb{A}^{2}$, $\pi: Y \subset \mathbb{A}^{2} \times \mathbb{P}^{1} \rightarrow \mathbb{A}^{2}$ so that

Resolution of Singularities

One can define blowup a smooth point in $o \in \mathbb{A}^{2}$, $\pi: Y \subset \mathbb{A}^{2} \times \mathbb{P}^{1} \rightarrow \mathbb{A}^{2}$ so that

1. $E \subset \mathbb{P}^{1}=\pi^{-1}(o)$;

Resolution of Singularities

One can define blowup a smooth point in $o \in \mathbb{A}^{2}$, $\pi: Y \subset \mathbb{A}^{2} \times \mathbb{P}^{1} \rightarrow \mathbb{A}^{2}$ so that

1. $E \subset \mathbb{P}^{1}=\pi^{-1}(o)$;
2. $\pi: Y-E \rightarrow \mathbb{A}^{2}-\{0\}$ is isomorphic;

Resolution of Singularities

One can define blowup a smooth point in $o \in \mathbb{A}^{2}$, $\pi: Y \subset \mathbb{A}^{2} \times \mathbb{P}^{1} \rightarrow \mathbb{A}^{2}$ so that

1. $E \subset \mathbb{P}^{1}=\pi^{-1}(o)$;
2. $\pi: Y-E \rightarrow \mathbb{A}^{2}-\{0\}$ is isomorphic;
3. $E^{2}=-1$;

Resolution of Singularities

One can define blowup a smooth point in $o \in \mathbb{A}^{2}$, $\pi: Y \subset \mathbb{A}^{2} \times \mathbb{P}^{1} \rightarrow \mathbb{A}^{2}$ so that

1. $E \subset \mathbb{P}^{1}=\pi^{-1}(o)$;
2. $\pi: Y-E \rightarrow \mathbb{A}^{2}-\{0\}$ is isomorphic;
3. $E^{2}=-1$;
4. $K_{Y}=\pi^{*} K_{\mathbb{A}^{2}}+E$.

$$
\begin{aligned}
& Y \subset \mathbb{A}^{2} \times \mathbb{P}^{\prime} \\
& (x, y)\left[z_{0}, z_{1}\right] \\
& Y=V\left(x z_{1}-y z_{0}\right) \\
& \text { or } Y=\left\{(x, y),(z, z, z) \mid(x, y)=\left(z_{a}: z_{1}\right)\right\} \\
& \mathbb{A}^{2}
\end{aligned}
$$

Resolution of Singularities

Example

We have the following surface singularities. How can we compare their complexity?

Resolution of Singularities

Example

We have the following surface singularities. How can we compare their complexity?

1. S_{1} defined by $f(x, y)=x^{2}+y^{2}+z^{2}$;

Resolution of Singularities

Example

We have the following surface singularities. How can we compare their complexity?

1. S_{1} defined by $f(x, y)=x^{2}+y^{2}+z^{2}$;
2. S_{2} defined by $f(x, y)=x^{2}+y^{2}+z^{5}$;

Resolution of Singularities

Example

We have the following surface singularities. How can we compare their complexity?

1. S_{1} defined by $f(x, y)=x^{2}+y^{2}+z^{2}$;
2. S_{2} defined by $f(x, y)=x^{2}+y^{2}+z^{5}$;
3. S_{3} defined by $f(x, y)=x^{3}+y^{3}+z^{3}$.
$S_{1}: \quad x^{2}+y^{2}+z^{2}$

$S_{2} \quad x^{2}+y^{2}+z^{5}$

$$
\left\{\begin{array}{l}
E_{i} \cong \mathbb{P}^{\prime} \\
E_{i}^{2}=-2 \\
E_{i} \cdot E_{j}=1 \text { or } 0
\end{array}\right.
$$

$$
S_{3} \quad x^{2}+y^{3}+z^{3}
$$

$E \cong$ elliptic crore (cubic in \mathbb{P}^{2})

Quotient Singularity

We have the following another main sources of singularities.
Definition
Consider \mathbb{A}^{2} with coordinate $\{x, y\}$.

Quotient Singularity

We have the following another main sources of singularities.
Definition
Consider \mathbb{A}^{2} with coordinate $\{x, y\}$.
Consider a group action $\mathbb{Z} / r \mathbb{Z}$ on \mathbb{A}^{2} by $\sigma(x, y)=\left(\zeta^{a} x, \zeta^{b} y\right)$.

Quotient Singularity

We have the following another main sources of singularities.
Definition
Consider \mathbb{A}^{2} with coordinate $\{x, y\}$.
Consider a group action $\mathbb{Z} / r \mathbb{Z}$ on \mathbb{A}^{2} by $\sigma(x, y)=\left(\zeta^{a} x, \zeta^{b} y\right)$.
Let X be the quotient space, together with $\pi: \mathbb{A}^{2} \rightarrow X$.

Quotient Singularity

We have the following another main sources of singularities.
Definition
Consider \mathbb{A}^{2} with coordinate $\{x, y\}$.
Consider a group action $\mathbb{Z} / r \mathbb{Z}$ on \mathbb{A}^{2} by $\sigma(x, y)=\left(\zeta^{a} x, \zeta^{b} y\right)$.
Let X be the quotient space, together with $\pi: \mathbb{A}^{2} \rightarrow X$.
The image of $o \in X$ is singular of type $\frac{1}{r}(a, b)$.

Quotient Singularity

We have the following another main sources of singularities.
Definition
Consider \mathbb{A}^{2} with coordinate $\{x, y\}$.
Consider a group action $\mathbb{Z} / r \mathbb{Z}$ on \mathbb{A}^{2} by $\sigma(x, y)=\left(\zeta^{a} x, \zeta^{b} y\right)$.
Let X be the quotient space, together with $\pi: \mathbb{A}^{2} \rightarrow X$.
The image of $o \in X$ is singular of type $\frac{1}{r}(a, b)$.
Example
We have the following examples.

Quotient Singularity

We have the following another main sources of singularities.
Definition
Consider \mathbb{A}^{2} with coordinate $\{x, y\}$.
Consider a group action $\mathbb{Z} / r \mathbb{Z}$ on \mathbb{A}^{2} by $\sigma(x, y)=\left(\zeta^{a} x, \zeta^{b} y\right)$.
Let X be the quotient space, together with $\pi: \mathbb{A}^{2} \rightarrow X$.
The image of $o \in X$ is singular of type $\frac{1}{r}(a, b)$.

Example

We have the following examples.

1. S_{4} is a quotient singularity of type $\frac{1}{2}(1,1)$. This singularity is actually isomorphic to S_{1}.

Quotient Singularity

We have the following another main sources of singularities.
Definition
Consider \mathbb{A}^{2} with coordinate $\{x, y\}$.
Consider a group action $\mathbb{Z} / r \mathbb{Z}$ on \mathbb{A}^{2} by $\sigma(x, y)=\left(\zeta^{a} x, \zeta^{b} y\right)$.
Let X be the quotient space, together with $\pi: \mathbb{A}^{2} \rightarrow X$.
The image of $o \in X$ is singular of type $\frac{1}{r}(a, b)$.

Example

We have the following examples.

1. S_{4} is a quotient singularity of type $\frac{1}{2}(1,1)$. This singularity is actually isomorphic to S_{1}.
2. S_{5} is a quotient singularity of type $\frac{1}{5}(1,4)$.

Quotient Singularity

We have the following another main sources of singularities.
Definition
Consider \mathbb{A}^{2} with coordinate $\{x, y\}$.
Consider a group action $\mathbb{Z} / r \mathbb{Z}$ on \mathbb{A}^{2} by $\sigma(x, y)=\left(\zeta^{a} x, \zeta^{b} y\right)$.
Let X be the quotient space, together with $\pi: \mathbb{A}^{2} \rightarrow X$.
The image of $o \in X$ is singular of type $\frac{1}{r}(a, b)$.

Example

We have the following examples.

1. S_{4} is a quotient singularity of type $\frac{1}{2}(1,1)$. This singularity is actually isomorphic to S_{1}.
2. S_{5} is a quotient singularity of type $\frac{1}{5}(1,4)$.

Why Singularities

Degeneration of varieties

Why Singularities

Degeneration of varieties

Example
$X_{1} \subset \mathbb{A}^{3}$ defined by $y^{2}-t_{1} x-x^{2}-x^{3}$.

Why Singularities

Degeneration of varieties

Example
$X_{1} \subset \mathbb{A}^{3}$ defined by $y^{2}-t_{1} x-x^{2}-x^{3}$.

Example
$X_{2} \subset \mathbb{A}^{4}$ defined by $y^{2}-t_{1} x-t_{2} x^{2}-x^{3}$.

Why Singularities

Minimal Model Program

Why Singularities

Minimal Model Program

Theorem
Let S be a smooth non-rational surface. By contracting at most finitely many (-1) curves, one obtain a smooth surface S_{0} without (-1) curve, which we call a minimal surface.

Why Singularities

Minimal Model Program
Theorem
Let S be a smooth non-rational surface. By contracting at most finitely many (-1) curves, one obtain a smooth surface S_{0} without (-1) curve, which we call a minimal surface.

Theorem (Mori)

Let X be a smooth projective threefold. There is a sequence of birational maps

$$
X \rightarrow X_{1} \rightarrow \ldots \rightarrow X_{n}
$$

such that either X_{n} is a minimal model, or X_{n} admits a Mori fiber space.

Why Singularities

Minimal Model Program
Theorem
Let S be a smooth non-rational surface. By contracting at most finitely many (-1) curves, one obtain a smooth surface S_{0} without (-1) curve, which we call a minimal surface.

Theorem (Mori)

Let X be a smooth projective threefold. There is a sequence of birational maps

$$
X \rightarrow X_{1} \rightarrow \ldots \rightarrow X_{n}
$$

such that either X_{n} is a minimal model, or X_{n} admits a Mori fiber space.

However, we need to allow "mild" singularities (terminal singularities indeed) in order for the above program to work.

Complexity of Singularities

Definition
Let X be a possibly singular variety. Let $\pi: Y \rightarrow X$ be a resolution. We can compare $K_{Y}=\pi^{*} K_{X}+\sum a_{i} E_{i}$. Then X is said to be

Complexity of Singularities

Definition
Let X be a possibly singular variety. Let $\pi: Y \rightarrow X$ be a resolution. We can compare $K_{Y}=\pi^{*} K_{X}+\sum a_{i} E_{i}$. Then X is said to be

Complexity of Singularities

Definition
Let X be a possibly singular variety. Let $\pi: Y \rightarrow X$ be a resolution. We can compare $K_{Y}=\pi^{*} K_{X}+\sum a_{i} E_{i}$. Then X is said to be

1. terminal if $a_{i}>0$ for all i;

Complexity of Singularities

Definition
Let X be a possibly singular variety. Let $\pi: Y \rightarrow X$ be a resolution. We can compare $K_{Y}=\pi^{*} K_{X}+\sum a_{i} E_{i}$. Then X is said to be

1. terminal if $a_{i}>0$ for all i;
2. canonical if $a_{i} \geq 0$ for all i;

Complexity of Singularities

Definition
Let X be a possibly singular variety. Let $\pi: Y \rightarrow X$ be a resolution. We can compare $K_{Y}=\pi^{*} K_{X}+\sum a_{i} E_{i}$. Then X is said to be

1. terminal if $a_{i}>0$ for all i;
2. canonical if $a_{i} \geq 0$ for all i;
3. klt if $a_{i}>-1$ for all i;

Complexity of Singularities

Definition

Let X be a possibly singular variety. Let $\pi: Y \rightarrow X$ be a resolution. We can compare $K_{Y}=\pi^{*} K_{X}+\sum a_{i} E_{i}$. Then X is said to be

1. terminal if $a_{i}>0$ for all i;
2. canonical if $a_{i} \geq 0$ for all i;
3. klt if $a_{i}>-1$ for all i;
4. Ic if $a_{i} \geq-1$ for all i.

Surface Singularities

Let $o \in X$ be possibly singular point in a surface. A neighborhood of $o \in X$ is called a "germ of singularity".

Surface Singularities

Let $o \in X$ be possibly singular point in a surface. A neighborhood of $o \in X$ is called a "germ of singularity".

The $o \in X$ is terminal if and only if $o \in X$ is non-singular.

Surface Singularities

The following are equivalent:

$$
A-D-E
$$

Exc (π)

A_{n}
\ll

D_{n}
\cdots

\leftarrow

-

Surface Singularities

The following are equivalent:

Surface Singularities

The following are equivalent:

1. $o \in X$ is canonical;

Surface Singularities

The following are equivalent:

1. $o \in X$ is canonical;
2. $o \in X$ is Du Val;

Surface Singularities

The following are equivalent:

1. $o \in X$ is canonical;
2. $o \in X$ is Du Val;
3. $o \in X$ is a singularity with Dynkin diagram $A-D-E$.

Surface Singularities

The following are equivalent:

1. $o \in X$ is canonical;
2. $o \in X$ is Du Val;
3. $o \in X$ is a singularity with Dynkin diagram $A-D-E$.

Where $A-D-E$ singularities are given by:

Surface Singularities

The following are equivalent:

1. $o \in X$ is canonical;
2. $o \in X$ is Du Val;
3. $o \in X$ is a singularity with Dynkin diagram $A-D-E$.

Where $A-D-E$ singularities are given by:

1. A_{n} is given by $x^{2}+y^{2}+z^{n+1}$ (with $n \geq 1$);

Surface Singularities

The following are equivalent:

1. $o \in X$ is canonical;
2. $o \in X$ is Du Val;
3. $o \in X$ is a singularity with Dynkin diagram $A-D-E$.

Where $A-D-E$ singularities are given by:

1. A_{n} is given by $x^{2}+y^{2}+z^{n+1}$ (with $n \geq 1$);
2. D_{n} is given by $x^{2}+y^{2} z+z^{n-1}$ (with $n \geq 3$);

Surface Singularities

The following are equivalent:

1. $o \in X$ is canonical;
2. $o \in X$ is Du Val;
3. $o \in X$ is a singularity with Dynkin diagram $A-D-E$.

Where $A-D-E$ singularities are given by:

1. A_{n} is given by $x^{2}+y^{2}+z^{n+1}$ (with $n \geq 1$);
2. D_{n} is given by $x^{2}+y^{2} z+z^{n-1}$ (with $n \geq 3$);
3. E_{6} is given by $x^{2}+y^{3}+z^{4}$;

Surface Singularities

The following are equivalent:

1. $o \in X$ is canonical;
2. $o \in X$ is Du Val;
3. $o \in X$ is a singularity with Dynkin diagram $A-D-E$.

Where $A-D-E$ singularities are given by:

1. A_{n} is given by $x^{2}+y^{2}+z^{n+1}$ (with $n \geq 1$);
2. D_{n} is given by $x^{2}+y^{2} z+z^{n-1}$ (with $n \geq 3$);
3. E_{6} is given by $x^{2}+y^{3}+z^{4}$;
4. E_{7} is given by $x^{2}+y^{3}+y z^{3}$;

Surface Singularities

The following are equivalent:

1. $o \in X$ is canonical;
2. $o \in X$ is Du Val;
3. $o \in X$ is a singularity with Dynkin diagram $A-D-E$.

Where $A-D-E$ singularities are given by:

1. A_{n} is given by $x^{2}+y^{2}+z^{n+1}$ (with $n \geq 1$);
2. D_{n} is given by $x^{2}+y^{2} z+z^{n-1}$ (with $n \geq 3$);
3. E_{6} is given by $x^{2}+y^{3}+z^{4}$;
4. E_{7} is given by $x^{2}+y^{3}+y z^{3}$;
5. E_{8} is given by $x^{2}+y^{3}+z^{5}$.

Threefold Terminal Singularities

If $o \in X$ is an isolated cDV point and Gorenstein.

Threefold Terminal Singularities

If $o \in X$ is an isolated cDV point and Gorenstein.

1. $c A:\left(x y+z^{n+1}+u g(x, y, z, u)=0\right) \in \mathbb{C}^{4}$.

Threefold Terminal Singularities

If $o \in X$ is an isolated cDV point and Gorenstein.

1. $c A:\left(x y+z^{n+1}+u g(x, y, z, u)=0\right) \in \mathbb{C}^{4}$.
2. $c D:\left(x^{2}+y^{2} z+z^{n-1}+u g(x, y, z, u)=0\right) \in \mathbb{C}^{4}$.

Threefold Terminal Singularities

If $o \in X$ is an isolated cDV point and Gorenstein.

1. $c A:\left(x y+z^{n+1}+u g(x, y, z, u)=0\right) \in \mathbb{C}^{4}$.
2. $c D:\left(x^{2}+y^{2} z+z^{n-1}+u g(x, y, z, u)=0\right) \in \mathbb{C}^{4}$.
3. $c E_{6}:\left(x^{2}+y^{3}+z^{4}+u g(x, y, z, u)=0\right) \in \mathbb{C}^{4}$.

Threefold Terminal Singularities

If $o \in X$ is an isolated cDV point and Gorenstein.

1. $c A:\left(x y+z^{n+1}+u g(x, y, z, u)=0\right) \in \mathbb{C}^{4}$.
2. $c D:\left(x^{2}+y^{2} z+z^{n-1}+u g(x, y, z, u)=0\right) \in \mathbb{C}^{4}$.
3. $c E_{6}:\left(x^{2}+y^{3}+z^{4}+u g(x, y, z, u)=0\right) \in \mathbb{C}^{4}$.
4. $c E_{7}:\left(x^{2}+y^{3}+y z^{3}+u g(x, y, z, u)=0\right) \in \mathbb{C}^{4}$.

Threefold Terminal Singularities

If $o \in X$ is an isolated cDV point and Gorenstein.

1. $c A:\left(x y+z^{n+1}+u g(x, y, z, u)=0\right) \in \mathbb{C}^{4}$.
2. $c D:\left(x^{2}+y^{2} z+z^{n-1}+u g(x, y, z, u)=0\right) \in \mathbb{C}^{4}$.
3. $c E_{6}:\left(x^{2}+y^{3}+z^{4}+u g(x, y, z, u)=0\right) \in \mathbb{C}^{4}$.
4. $c E_{7}:\left(x^{2}+y^{3}+y z^{3}+u g(x, y, z, u)=0\right) \in \mathbb{C}^{4}$.
5. $c E_{8}:\left(x^{2}+y^{3}+z^{5}+u g(x, y, z, u)=0\right) \in \mathbb{C}^{4}$.

Threefold Terminal Singularities

$o \in X$ is a quotient of a smooth or an isolated cDV point.

Threefold Terminal Singularities

$o \in X$ is a quotient of a smooth or an isolated cDV point.

$$
\text { 1. } \mathbb{C}^{3} / \frac{1}{r}(a, r-a, 1) \cong \mathbb{C}^{3} / \frac{1}{r}(1,-1, b),(r, a)=(r, b)=1 .
$$

Threefold Terminal Singularities

$o \in X$ is a quotient of a smooth or an isolated cDV point.

$$
\begin{aligned}
& \text { 1. } \mathbb{C}^{3} / \frac{1}{r}(a, r-a, 1) \cong \mathbb{C}^{3} / \frac{1}{r}(1,-1, b),(r, a)=(r, b)=1 . \\
& \text { 2. } c A / r:(x y+f(z, u)=0) \in \mathbb{C}^{4} / \frac{1}{r}(a, r-a, 1, r) .
\end{aligned}
$$

Threefold Terminal Singularities

$o \in X$ is a quotient of a smooth or an isolated cDV point.

$$
\text { 1. } \mathbb{C}^{3} / \frac{1}{r}(a, r-a, 1) \cong \mathbb{C}^{3} / \frac{1}{r}(1,-1, b),(r, a)=(r, b)=1 .
$$

$$
\text { 2. } c A / r:(x y+f(z, u)=0) \in \mathbb{C}^{4} / \frac{1}{r}(a, r-a, 1, r) \text {. }
$$

3. $c A x / 2:\left(x^{2}+y^{2}+f(z, u)=0\right) \in \mathbb{C}^{4} / \frac{1}{2}(1,0,1,0)$.

Threefold Terminal Singularities

$o \in X$ is a quotient of a smooth or an isolated cDV point.

$$
\text { 1. } \mathbb{C}^{3} / \frac{1}{r}(a, r-a, 1) \cong \mathbb{C}^{3} / \frac{1}{r}(1,-1, b),(r, a)=(r, b)=1 .
$$

2. $c A / r:(x y+f(z, u)=0) \in \mathbb{C}^{4} / \frac{1}{r}(a, r-a, 1, r)$.
3. $c A x / 2:\left(x^{2}+y^{2}+f(z, u)=0\right) \in \mathbb{C}^{4} / \frac{1}{2}(1,0,1,0)$.
4. $c A x / 4:\left(x^{2}+y^{2}+f(z, u)=0\right) \in \mathbb{C}^{4} / \frac{1}{4}(1,3,1,2)$.

Threefold Terminal Singularities

$o \in X$ is a quotient of a smooth or an isolated cDV point.

1. $\mathbb{C}^{3} / \frac{1}{r}(a, r-a, 1) \cong \mathbb{C}^{3} / \frac{1}{r}(1,-1, b),(r, a)=(r, b)=1$.
2. $c A / r:(x y+f(z, u)=0) \in \mathbb{C}^{4} / \frac{1}{r}(a, r-a, 1, r)$.
3. $c A x / 2:\left(x^{2}+y^{2}+f(z, u)=0\right) \in \mathbb{C}^{4} / \frac{1}{2}(1,0,1,0)$.
4. $c A x / 4:\left(x^{2}+y^{2}+f(z, u)=0\right) \in \mathbb{C}^{4} / \frac{1}{4}(1,3,1,2)$.
5. $c D / 2: P \in X$ is given by $(\varphi=0) \subset \mathbb{C}^{4} / \frac{1}{2}(1,1,0,1)$ with φ being certain $c D$ type.

Threefold Terminal Singularities

$o \in X$ is a quotient of a smooth or an isolated cDV point.

1. $\mathbb{C}^{3} / \frac{1}{r}(a, r-a, 1) \cong \mathbb{C}^{3} / \frac{1}{r}(1,-1, b),(r, a)=(r, b)=1$.
2. $c A / r:(x y+f(z, u)=0) \in \mathbb{C}^{4} / \frac{1}{r}(a, r-a, 1, r)$.
3. $c A x / 2:\left(x^{2}+y^{2}+f(z, u)=0\right) \in \mathbb{C}^{4} / \frac{1}{2}(1,0,1,0)$.
4. $c A x / 4:\left(x^{2}+y^{2}+f(z, u)=0\right) \in \mathbb{C}^{4} / \frac{1}{4}(1,3,1,2)$.
5. $c D / 2: P \in X$ is given by $(\varphi=0) \subset \mathbb{C}^{4} / \frac{1}{2}(1,1,0,1)$ with φ being certain $c D$ type.
6. $c D / 3: P \in X$ is given as $(\varphi=0) \subset \mathbb{C}^{4} / \frac{1}{3}(0,2,1,1)$ with φ being certain $c D$ type.

Threefold Terminal Singularities

$o \in X$ is a quotient of a smooth or an isolated cDV point.

1. $\mathbb{C}^{3} / \frac{1}{r}(a, r-a, 1) \cong \mathbb{C}^{3} / \frac{1}{r}(1,-1, b),(r, a)=(r, b)=1$.
2. $c A / r:(x y+f(z, u)=0) \in \mathbb{C}^{4} / \frac{1}{r}(a, r-a, 1, r)$.
3. $c A x / 2:\left(x^{2}+y^{2}+f(z, u)=0\right) \in \mathbb{C}^{4} / \frac{1}{2}(1,0,1,0)$.
4. $c A x / 4:\left(x^{2}+y^{2}+f(z, u)=0\right) \in \mathbb{C}^{4} / \frac{1}{4}(1,3,1,2)$.
5. $c D / 2: P \in X$ is given by $(\varphi=0) \subset \mathbb{C}^{4} / \frac{1}{2}(1,1,0,1)$ with φ being certain $c D$ type.
6. $c D / 3: P \in X$ is given as $(\varphi=0) \subset \mathbb{C}^{4} / \frac{1}{3}(0,2,1,1)$ with φ being certain $c D$ type.
7. $c E / 2:\left(x^{2}+y^{3}+y g(z, u)+h(z, u)=0\right) \in \mathbb{C}^{4} / \frac{1}{2}(1,0,1,1)$.

Further Studies and Developments

Further Studies and Developments

- method of toric varieties for quotient singularities;

Further Studies and Developments

- method of toric varieties for quotient singularities;
- singularities of pairs (X, Δ), where Δ is a divisor (or \mathbb{Q}-divisor, \mathbb{R}-divisor) on X;

Further Studies and Developments

- method of toric varieties for quotient singularities;
- singularities of pairs (X, Δ), where Δ is a divisor (or \mathbb{Q}-divisor, \mathbb{R}-divisor) on X;
- singularities in positive characteristic.

Thank you!

