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1. Varieties, defining ideals and coordinate ring

What is Algebraic Geometry?

•Descartes: A geometric point is determined by its coordinate in a coordinate system.
Coordinates are tuples of numbers.
• A geometric object is a set of points which is set of tuples of numbers satisfying

some properties or some numeric conditions.
• A geometric object in Algebraic Geometry is a set of points, whose coordinates

satisfy a system of algebraic equations. This marks the difference between Algebraic
Geometry and Analytic Geometry or Differential Geometry, ...

Example 1.1. Examples of objects in Algebraic Geometry:

•A line on the plane: ax + by + c = 0.
•A circle on the plane: x2 + y2 = r.
•An ellipse, a parabola, a hyperbola, ...
• In general, a system of algebraic equations on a set of indeterminates.
• Inequalities are NOT allowed!!!
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IS THIS NOT TWO STRICT?

DOES IT MAKE SENSE TO STUDY THESE GEOMETRIC OBJECTS???

There are more reasons for Algebraic Geometry than just the above geometric objects.

MAIN POINT: Which value set should the solution of the system of algebraic equations
belong to?

Because we consider algebraic equations, we can take any value set, as long as one can
perform on them addition and multiplication! F

Example 1.2. Consider the famous equation in the integers

x2 + y2 = z2.

We will assume xyz 6= 0. Divide both sides by z we are led to

(1) (
x

z
)2 + (

y

z
)2 = 1.

Setting u =
x

z
; v =

y

z
, we have

(2) u2 + v2 = 1.
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This last equation determined a circle on the coordinate plane.

Draw a line through the point (−1, 0) as shown in the picture, with slope θ, inter-
secting the circle at point P (u, v). Then

(3) tan θ =
v

u + 1
.

Elementary trigonometry shows that

(4)

{
u = cos 2θ
v = sin 2θ.

Thus we have:

F An integral solution of (1) with x, y, z coprime is the same as a rational solution
of (2).
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F A rational solution of (2) is given by in terms of a rational number tan θ as in (3).

The geometric consideration of the set of real of (2) helps solving (1).

The example above is an illustration for the claim that Algebraic Geometry is a bridge
between different branches of Mathematics such as Number Theorey, Geometry, Analysis,
and also Physic, Informatics,... The basic language of Algebraic Geometry is Algebra,
especially Commutative Algebra.

1.1. Affine spaces and affine algebraic sets. Affine geometry, in contrast with
Euclidean geometry, ignores the metrics notion of distance and angle. The main notion
that remains is that of parallel lines.

We shall consider solution set of systems of polynomial equations in an algebraically
closed field.

Question 1.3. Why is an algebraically closed field?

To ensure the existence of all possible solutions - we want to see the ”geometric
nature” of the problem.

See Hilbert Nullstelensatz below.
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Fix a field k which is an algebraically closed: any polynomial with coefficients from k
and of degree at least one has at least one root in k.

Example 1.4. The field of complex numbers C. (In what follows we are interpret k
as C, BUT shall mainly consider only REAL solutions - that is to interpret the REAL
part of the geometric pictures).

A system of polynomial equations is given by polynomials f1, f2, ..., fr, ... ∈ k[z1, ..., zn]
as follows

(5)


f1 = 0
f2 = 0
...

fr = 0
...

A theorem of Hilbert ensures however that this system is equivalent (i.e., has the same
set of solutions) to a system with finitely many equations. (However, Hilbert’s theorem
does not tell us which system it is).

Theorem 1.5 (Hilbert’s Basis Theorem). Any ideal in the ring k[z1, ..., zn] is
finitely generated.
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To apply this theorem to the above system, we just notice that the solution set of (5)
is the same as the set of solutions of the system

{f = 0, f ∈ I = (f1, f2, ..., fr, ...)},
where I = (f1, f2, ..., fr, ...) is the ideal in k[z1, ..., zn] generated by f1, f2, ..., fn, ....

Thus from now on, we shall have in mind the solution set of ideals in k[z1, z2, ..., zn],
which we know that they are all finitely generated. Such a set is called ”an affine algebraic
set”.

Example 1.6. F If we take ideal (0), the whole space kn = {(a1, ..., an) : ai ∈ k}
is the solution set. This space will be denoted by Ank .

F If we take the whole ring R = k[z1, ..., zn] as the ideal, the solution set is empty.
F A singe point P (a1, ..., an) is the solution set of the maximal ideal

mP = (z1 − a1, ..., zn − an).

1.2. Projective spaces and projective algebraic sets. In contrast to Affine
Geometry, Projective Geometry does not even have the notion of parallel. It can be seen
as the geometry of constructions with straight-edge.

Models of Projective spaces are provided by Affine spaces added “points at infinity”.
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Example 1.7. P1
k, for k = R: the real projective line. It is given by adding on more

points at infinity.

Fix a point P outside a line l on a plane. Each point on l determines a line through P ,
an vice-versa, up to one line: the line passing through P and parallel with l certainly
does not correspond to any point on l. We imagine it corresponds to a point at infinity.
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Algebraically, this work for any field k. On the coordinate plane (Oxy) with P (0, 1)
and l = (Ox).

A line ∆ through P (0, 1) is given by an equation

∆ : ax + by = b, (a, b) 6= (0, 0).

Note that the pair (a, b) is determined up to a non-zero constant. Therefore instead
of a pair (a, b) we consider the ratio [a : b].

• If a 6= 0, ∆ intersects with (Ox) in the point x =
b

a
.

• If a = 0, ∆ is the line parallel to (Ox).

Thus, [0 : b] corresponds to the point at infinity of the projective line P1
k.

The projective space Pnk , as a set, consists of n−tuples{
[a0 : a1 : ... : an]|ai ∈ k, of ”ratio” not all equal to 0.

}
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Hence, by “ratio” we mean that two tuples [a0 : a1 : ... : an] and [λa1 : λa2 : ... : λan]
are the same, for all λ ∈ k, λ 6= 0.

Exercise 1.8. Give the precise model of P2
R as the set of line in R3 passing through

P (0, 0, 1) and intersecting plane (Oxy) to shows that P2
R is obtained from R2 by

adding a whole projective line at infinity.

1.3. Algebraic sets in Pnk. The tuple [λa0 : λa1 : ... : λan] is called the ho-
mogeneous coordinates of a point in Pnk . We can thus note evaluate a polynomial
f ∈ k[Z0, Z1, ..., Zn] at such a point. However, if f is homogeneous of degree d, i.e.,

f (λZ0, λZ1, ..., λZn) = λdf (Z0, Z1, ..., Zn),

we can speak about f ”vanishing at a point” in Pnk , namely, if

f (a0, a1, ..., an) = 0.

Hence, we can speak about solution sets of a system of homogeneous equations.

Definition 1.9. An algebraic set in Pnk is by definition the solution set of a system of
homogeneous equations or equivalently the common zeros of a homogeneous ideal.

Recall: An ideal I in k[Z0, Z1, ..., Zn] is said to be homogeneous if satisfies: f ∈ I
implies each homogeneous component of f is in I.
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Exercise 1.10. Show that I is homogeneous if and only if it is generated by
homogeneous polynomials.

Example 1.11. Linear (sub)spaces in Pnk are given by system of homogeneous equa-
tions

V =
{ n∑
i=0

aijZi, j = 1, 2, ..., d.
}

1.4. Relationships between affine and projective spaces. Consider the quo-
tient map

An+1
k \ {0} −→ Pnk ;

(a0, a1, ..., an) 7→ [a0 : a1 : ... : an].

The preimage of this surjective map at a point

P [a0 : a1 : . . . : an] ∈ Pnk
is the (punched) line

lP = {(λa0, λa1, . . . , λan)|λ 6= 0}
in An+1

k \ {0}. This is the generalizaton of the projective map considered before.
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More general, the preimage of a linear space

V =
{ n∑
i=0

aijZi, j = 1, 2, ..., d
}

in Pnk is the vector subspace V̂ =
{∑n

i=0 aijZi, j = 1, 2, ..., d.
}
\ {0} in An+1

k \ {0}.

Exercise 1.12. Check this and use it to prove the following claim: Two linear
spaces V and W in Pnk intersect non-trivially if and only if their preimages

V̂ ∩ Ŵ 6= 0.

Consequently, if

dim V̂ + dim Ŵ ≥ n + 2

then V and W intersect non-trivially in Pnk . We set

dim V := dim V̂ − 1.

The the claim above amounts to saying: if

dimV + dimW ≥ n

then V and W intersect non-trivially in Pnk .

In particular, any two lines in the projective plan intersect non-trivally.
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On the other hand, Pnk can be seen a comprising of affine subsets, determined by the
condition:

Ui =
{

[a0 : a1 : ... : an]|ai 6= 0
}
,

for each i fixed.

There is a natural bijection ϕi : Ui −→ Ank , given by

[a0 : a1 : ... : ai : ... : an] 7→
(a0

ai
,
a1

ai
, ..., 1̂, ...,

an
ai

)
,

where 1 =
ai
ai

is omitted.

Exercise 1.13. Show that if X ⊂ Pnk is an algebraic set then X ∩Ui is an affine
algebraic set in Ui = Ank. Show that the converse is also true: X ⊂ Pnk is an

algebraic set if X ∩ Ui is an affine algebraic set in Ui each i = 0, n.

1.5. Affine and Projective varieties. Assume that Z ⊂ Ank is an algebraic set.
Thus Z is the solution set of an ideal I. Let I(Z) denote the set of all polynomials in
k[z1, ..., zn] vanishing on Z. Then, by definition

I ⊂ I(Z).

It turns out that I(Z) is the radical of I.
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Recall: The radical of I in k[z1, ..., zn] is the set of all polynomials in k[z1, ..., zn]
whose power of some order belong to I

r(I) = {f ∈ k[z1, ..., zn] : ∃n ≥ 0, fn ∈ I}.

Exercise 1.14. Show that r(I) is an ideal containing I.

The following theorem of D. Hilbert is fundamental for Algebraic Geometry.

Theorem 1.15 (Hilbert’s Nullstellensatz). Let I ⊂ k[z1, ..., zn] be an ideal. Let
V (I) be the solution set (also called ”zero set”) of I. Then

I(V (I)) = r(I).

NOTE: Nullstellen = zero locus - the loci where a function vanishes.

Example 1.16. If p ⊂ k[z1, ..., zn] is a prime ideal, then, by definition,

p = r(p).

Thus, if Z = V (p) - the zero locus of p, then

p = I(Z).
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We definite a topology on Ank by specifying algebraic sets as closed sets of the topology.
Hence, an open set has the form

DI = {P ∈ Ank : ∃f ∈ I, f (P ) 6= 0}

for a given ideal I of k[z1, ..., zn].

In particular, for a singe polynomial f ∈ k[z1, ..., zn],

Df = {P ∈ Ank : f (P ) 6= 0}.

These open sets are called basic open sets, they form a basis for the Zarisky topology
on Ank .

Exercise 1.17. Check that the above definition is correct, i.e., show that the above
defined open set form a topology.

Example 1.18. In the case n = 1, the affine line A1
k. Every ideal if k[z] is principal,

i.e., generated by a singe polynomial. Hence, closed sets in A1
k are either the whole

space or finite sets (and the empty set). We thus see that this topology is very coarse
(i.e., there are very few open sets). Nevertheless, it is quite useful. It is called Zariski
topology.
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Noetherianity. The ring k[z1, ..., zn] is Noetherian, i.e., any increasing chain of ideals

I1 ⊂ I2 ⊂ ... ⊂ Ir ⊂ ...

stabilizes. This is reflexed on the Zariski topology: any decreasing chain of closed
subsets in Ank stabilizes. This implies the existence of irreducible components in any
closed subset.

A closed subset Z is called irreducible if it cannot be represented as union of two proper
closed subsets.

Example 1.19. If p is a prime ideal then V (p) is irreducible.

Exercise 1.20. Show that a closed setin Ank is the union of finitely many irre-
ducible closed subsets.

Thus we see that irreducible closed subsets are cornerstones in the Zariski topology.

Definition 1.21. An irreducible algebraic set in Ank is called an affine variety. It has
a topology inherited from the Zariski topology on Ank .

Hence, a closed subset in an affine variety Z ⊂ Ank has the form

V (I) ∩ Z,
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where I ⊂ k[z1, ..., zn].

Recall that if Z = V (p) for some prime ideal p, then

V (I) ∩ V (p) = V (I + p).

In this way we obtain a 1–1 correspondence between closed subsets in Z and radical
ideals in k[z1, ..., zn] containing p{

Z ′ ⊆ Z, closed subsets
}
←→

{
I ⊇ p, radial ideals

}
.

Let

A(Z) := k[z1, ..., zn]/p,

and

ϕ : k[z1, .., zn] −→ A

be the canonical quotient map. Then we have the correspondence{
I ⊇ p, radial ideals

}
←→

{
I radial ideals of A

}
.

In this way, closed subsets of Z are in 1–1 correspondence with radical ideals in A(Z).

In particular, a point of Z corresponds to a maximal ideal of k[z1, ..., zn] containing p,
and hence, a maximal ideal of A.
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We remark that, by definition, A is an integral domain: if a.b = 0 the either a = 0 or
b = 0.

We call A the affine coordinate ring of Z. Notice that we can fully recover Z from A:

• Points ←→ maximal ideals;
• Closed subsets ←→ radical ideals.

Thus an affine variety is completely determined by its coordinate ring. This is indepen-
dent of the ambient affine space Ank .

The homogeneous coordinate ring of a projective variety. There are analogous defi-
nitions for projective varieties. Let X ⊂ Pnk be a closed subset. Thus, the homogeneous
coordinate of points inX is the solution set of a homogeneous ideal J in k[Z0, Z1, ..., Zn].
Let I(X) be the ideal of polynomials vanishing on X . Then,

J ⊂ I(X).

As in the affine case I(X) is the radical of J and we have a 1–1 correspondence
between the set of closed subsets in Pnk and homogeneous ideals of k[Z0, Z1, ..., Zn]
OTHER THAN the ideal (Z0, Z1, ..., Zn) (since this ideal corresponds to the point
(0, 0, ..., 0) ∈ An+1

k ).
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An algebraic set X in Pnk is irreducible if the ideal I(X) is a prime ideal. We define
the homogeneous coordinate ring of X to be

S(X) := k[Z0, Z1, ..., Zn]/I(X).

This is a graded ring because I(X) is a homogeneous ideal.

RECALL: A ring R is graded if it has the form

R = R0 ⊕R1 ⊕ ...⊕Rn ⊕ ...
such that, if x ∈ Rm, y ∈ Rn then xy ∈ Rm+n. In particular, R0 is a subring in R and
each Ri is a module over R0.

For example, R = k[Z0, Z1, ..., Zn] is graded by the total degree of the homogeneous
polynomials, for each f ∈ R,

f = f0 + f1 + ... + fd,

where fi is the homogeneous component of degree i. Hence,

R = R0 ⊕R1 ⊕ ...⊕Rn ⊕ ...

By definition, a homogeneous ideal J in R is the direct sum of its homogeneous com-
ponents:

J = J0 ⊕ J1 ⊕ ...⊕ Jn ⊕ ...; Ji ⊂ Ri.
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Hence,

R/J = R0/J0 ⊕R1/J1 ⊕ ...⊕Rn/Jn ⊕ ...

Exercise 1.22. Show that the above decomposition make R/J a graded ring.

WARNING: The construction of the homogeneous coordinate ring of a projective variety
is dependent on the coordinate, i.e., it is dependent on the ambient projective space.

Example 1.23. Consider again the Fermat equation

Z2
0 + Z2

1 = Z2
2

in the ring k[Z0, Z1, Z2]. It defines a variety X ( a curve in P2
k). The coordinate ring

S(X) = k[Z0, Z1, Z2]/(Z2
0 + Z2

1 − Z
2
2) has:

• S0 = k;
• S1 = 〈Z0, Z1, Z2〉k is a 3-dimensional k−vector space;
• S2 = 〈Z2

0 , Z
2
1 , Z0Z1, Z0Z2, Z1Z2〉k is a 5−dimensional k−vector space;

• ...

Consider now the map from P1
k to P2

k given by

[U : V ] 7−→ [U2 − V 2 : 2UV : U2 + V 2].
20



Its image is in X .

Conversely, consider the map

[Z0 : Z1 : Z2] 7−→ [Z0 + Z2 : Z1],

restricted to X . This map is well-defined up to the point [1 : 0 : −1]. To prolong it to
this point, we perform the following transformation:

Z0 + Z2

Z1
=

Z2
2 − Z

2
0

(Z2 − Z0)Z1
=

Z1

Z2 − Z0
.

Thus X is isomorphic to the projective line.

But the homogeneous coordinate ring S(X) is NOT isomorphic to k[U, V ] as graded
rings. We see that the algebra-geometric properties of projective varieties is more
complicated that that of affine varieties (and much more beautiful).

Remark 1.24. The isomorphism considered above explains why the Fermat equation
x2+y2 = z2 is solvable in in the integers. For higher degree equations, such morphisms
do not exist.
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2. Regular and rational functions and maps

2.1. Regular functions. Let X ⊂ Ank be a closed subset. Any polynomial in
k[z1, ..., zn] determines a function of X . Any two such functions are equal if the poly-
nomials are congruent modulo I(X), that is,

f ≡ g (mod I(X)) =⇒ f = g as functions on X.

Such a function is called a regular function on X . In particular, if X is an affine variety,
regular functions on X are in 1-1 correspondence with elements of the coordinate ring
of X .

The above definition does not reflect the “local feature of function” - a function is
regular or not is decided by the whole space X . Next, we shall give a local notion of
regularity of a function and show that the two definitions are equivalent.

Let P ∈ Ank be a point. Let f be a function on an open subset U ⊂ X containing P .
We say that f is regular at P if in some neighborhood V of P it is can be expressed as
a quotient

f =
g

h
,

where g, h are polynomials with h 6= 0 on V .
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Notice that the choice of the neighborhood of P is arbitrary. We emphasize that open
sets in Ank is very big!

Assume that f is defined over an open subset U . We say that f is regular on U if f
is regular at every point of U .

Example 2.1 (Every regular function on Ank is polynomial). Let f be a function of
Ank , which is regular at every point of Ank . Thus, for each point P , we have

f =
gP
hP
,

where gP , hP are polynomials with hP (P ) 6= 0.

Consider the ideal generated by all polynomials {hP |P ∈ Ank}. Then this ideal does
not have common zero (as f is defined every where)! Hence, according to Hilbert’s
Nullstellensatz, it is the whole polynomial ring and thus 1 is in it. Therefore,

1 =
∑

cP · hP - a finite sum with cP ∈ k[z1, ..., zn].

This implies that

f =
gP
hP

=

∑
cPgP∑
cPhP

=
∑

cPgP ∈ k[z1, ..., zn].
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This shows that f is a polynomial.

Let Z ⊂ Ank be a closed subset, P ∈ Z. Let U be a neighborhood of P in Z and f is
a function on U . We say that f is regular at P if in some neighborhood V of P , f is

expressible as a quotient
p

q
, where p, q are polynomials in k[z1, ..., zn] and q 6= 0 on V .

Note that polynomials that are congruent modulo I(Z) determine the same function
on Z. Hence, we can consider p and q as elements of A(Z) = k[z1, ..., zn]/I(Z) the
coordinate ring of Z. The same argument as above shows

Lemma 2.2. The ring of functions regular at every point of Z is the coordinate
ring A(Z) of Z. More generally, the ring of functions regular at every point of a
basic open set Df is the localization A(Z)[1

f ].

The lemma above explains the meaning of localization in Commutative Algebra: roughly
speaking, localization is to restrict to an open set.

Exercise 2.3. What is the ring of regular functions S on the open A2
k \ {(0, 0)}.

(Note that this open set is NOT a basic open subset).
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HINT: Let represent this open subset as the union of two basic open subsets: A2
k\(Ox)

and A2
k \ (Oy).

Last but not least, we can speak about functions regular at a point P in an affine
variety Z without specifying the open set on which it is defined (but it has to be defined
in some open set containing P ).

Given any two such functions, say f1 and f2, defined respectively on open sets V1 and
V2 containing P . Then V1∩V2 is also open set and contains P . Hence, we can consider
f1 and f2 as a function on V1 ∩ V2 and perform addition and multiplication of them on
this open set.

Now we say f1 and f2 are “the same” at P if there exists an open neighborhood on
which they are equal. In this case, we also say that f1 and f2 determine the same ”germ
of functions” at P . A germ of regular functions at P is thus determined by a function
on an open neighborhood of P , regular at P . As shown above, we can add multiply
germs of regular function. In this way we obtain the ring of germs of functions regular
at P .
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Lemma 2.4. The ring of germs of function regular at P is isomorphic to the
localization of A(Z) at the maximal ideal of A(Z) determining P , i.e.,

mP =
{
f ∈ A(Z)|f (P ) = 0

}
.

More explicitly, denote the ring of germs of function regular at P by OZ,P , we
have

OZ,P =
{p
q
| p, q ∈ A(Z), q(P ) 6= 0

}
.
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