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Introduction

The objects of the talk are the automorphisms of a projective variety X
over an algebraically closed field k, i.e., the morphisms of varieties
f : X → X such that there exists a morphism of varieties g : X → X
satisfying f ◦ g = g ◦ f = id. For simplicity, we will assume k of
characteristic 0.
The automorphisms form an (abstract) group Aut(X ), which is only
partially understood. We will first see that Aut(X ) has the structure of a
k-group scheme which is locally of finite type, i.e., a union of open affine
subschemes of finite type.
One then shows that the connected component of the identity in Aut(X ) is
a closed normal subgroup scheme of finite type. By Cartier’s theorem, this
subgroup scheme Aut0(X ) is a smooth variety.
Moreover, the connected components of Aut(X ) are the cosets f Aut0(X ),
where f ∈ Aut(X ). They are parameterized by the quotient group
Aut(X )/Aut0(X ) = π0 Aut(X ).



Introduction (continued)
Thus, we have an exact sequence

1 −→ Aut0(X ) −→ Aut(X ) −→ π0 Aut(X ) −→ 1,

where Aut0(X ) is a connected algebraic group (i.e., a group scheme of
finite type), and π0 Aut(X ) is a discrete group.
We may analyze Aut(X ) by considering its neutral component Aut0(X )
and its group of components π0 Aut(X ) separately. In this lecture, we will
mainly consider the group of components. The neutral component will be
discussed in my lecture at the Workshop on Commutative Algebra and
Algebraic Geometry.
Examples show that π0 Aut(X ) may be infinite; equivalently, Aut(X ) is not
necessarily of finite type. Further examples (more elaborate and very
recent) show that the group π0 Aut(X ) may not be finitely generated.
Still, this group admits a homomorphism with finite kernel to some
GLr (Z), and this has remarkable finiteness consequences.



The automorphism functor

In this first part, we consider varieties and schemes over an algebraically
closed field k. Morphisms and products of schemes are understood to be
over k as well.

Definition
Let X be a scheme. A family of automorphisms of X over a scheme S is an
automorphism of the S-scheme X × S, i.e., an automorphism f of X × S
such that prS ◦ f = prS , where prS : X × S → S denotes the projection.
For example, a family of automorphisms of X over Spec(k) is just an
automorphism of X .
More generally, a family of automorphisms of X over S is a morphism of
schemes f : X × S → X × S of the form (x , s) 7−→ (F (x , s), s), where
F : X × S → X is a morphism, such that f admits an inverse of the same
form. In particular, the morphism Fs : X −→ X , x 7−→ F (x , s) is an
automorphism for any s ∈ S(k) (but the condition for F to define a family
of automorphisms is more restrictive).



The families of automorphisms of X over S form a group denoted
Aut(X × S/S).

Definition
Let f ∈ Aut(X × S/S), and u : T → S a morphism of schemes. The
pull-back u∗(f ) is the automorphism of X × T over T obtained by base
change: u∗(f )(x , t) = f (x , u(t)).
This defines a group homomorphism u∗ : Aut(X × S/S)→ Aut(X ×T/T ).
The assignments S 7→ Aut(X × S/S) and u 7→ u∗ yield a contravariant
functor from the category of schemes to that of groups: the automorphism
group functor AutX .

Theorem
If X is a projective scheme, then AutX is represented by a group scheme,
locally of finite type.
The idea of the proof is to encode automorphisms by their graphs, which
are closed subschemes of X × X , and to use the representability of the
Hilbert functor of such subschemes.



More specifically, one assigns to each f ∈ Aut(X ) the morphism

(id, f ) : X −→ X × X , x 7−→ (x , f (x)).

This morphism yields an isomorphism of X onto its image, the graph Γf .
This is the inverse image of the diagonal diag(X ) ⊂ X × X under the
morphism X × X −→ X × X , (x , y) 7−→ (f (x), y), and hence is closed.
The two projections pr1,pr2 : X × X → X restrict to isomorphisms
Γf

'−→ X , and this condition characterizes the graphs of automorphisms
among the closed subschemes of X × X . The graph of the identity is the
diagonal diag(X ).
The graph construction

f ∈ Aut(X ) 7−→ Γf ⊂ X × X

extends to families of automorphisms over a scheme S. It identifies these
families with the closed subschemes

Γ ⊂ (X × S)×S (X × S) ' X × X × S
such that the two projections pri : Γ −→ X × S, (x1, x2, s) 7−→ (xi , s) are
isomorphisms.



Some background on flatness

Definition
Let A be a commutative ring. An A-module M is flat if for any exact
sequence of A-modules 0 −→ M1 −→ M2 −→ M3 −→ 0, the sequence of
A-modules 0 −→ M ⊗A M1 −→ M ⊗A M2 −→ M ⊗A M3 −→ 0 is exact.
We will need the following observations:
1) If M is a flat A-module and B is an A-algebra, then the B-module
B ⊗A M is flat.
2) Every locally free A-module is flat. In particular, if A is a field, then
every A-module is flat.
There is a partial converse to 2): every finitely generated flat module over
a noetherian ring is locally free.

Definition
A morphism of schemes f : X → Y is flat if for any x ∈ X with image
y = f (x), the homomorphism of local rings f ∗ : OY ,y → OX ,x makes OX ,x
a flat module over OY ,y . We also say that X is flat over Y .



Flat morphisms and the Hilbert polynomial
Flatness is preserved by base change: if f : X → Y is a flat morphism of
schemes and Y ′ → Y is any morphism of schemes, then the induced
morphism f ′ : X ×Y Y ′ → Y ′ is flat.
Also, the structural morphism f : X → Spec(k) is flat for any scheme X .
As a consequence, the projection X ×Y → Y is flat for any schemes X ,Y .
There is an important flatness criterion in terms of the Hilbert polynomial.
Recall that the Hilbert polynomial of a closed subscheme X ⊂ Pn is the
unique polynomial P(z) ∈ Q[z ] such that P(`) = dimH0(X ,O(`)) for
`� 0. This is also the Hilbert polynomial of the homogeneous coordinate
ring of X . The leading term of P(z) is d

r !z
r , where r is the dimension of X ,

and d is its degree.

Proposition
Let S be a connected noetherian scheme. Let X be a closed subscheme of
Pn

S = Pn × S with projection f : X → S. For any s ∈ S, consider the
Hilbert polynomial Ps of the fiber Xs viewed as a closed subscheme of
Pn

k(s). If f is flat, then Ps is independent of s ∈ S. The converse holds
when S is reduced.



The Hilbert functor
See Hartshorne, Algebraic Geometry, Chapter III for more on flatness and
the Hilbert polynomial.

Definition
Let P(z) ∈ Q[z ]. A flat family of closed subschemes of Pn with Hilbert
polynomial P over a scheme S is a closed subscheme of Pn

S which is flat
over S and satisfies Ps = P for any s ∈ S.
For any such subscheme X , the fibers Xs have the same dimension and
degree by the above proposition.
Given a morphism of schemes u : T → S, the pull-back X ×S T is a closed
subscheme of Pn

T which is flat over T , with Hilbert polynomial P. This
yields the Hilbert functor HilbP

Pn .
The following fundamental existence result is due to Grothendieck in a
much greater generality.

Theorem
The functor HilbP

Pn is represented by a projective scheme.



The Hilbert scheme
We will need a slight generalization of Grothendieck’s existence result, in
which Pn is replaced with a projective scheme Y .
We define the Hilbert functor HilbY in the obvious way, by considering flat
families of closed subschemes of Y instead of Pn (but we do not specify
the Hilbert polynomial).

Theorem
The functor HilbY is represented by a scheme HilbY , the disjoint union of
open and closed projective schemes.
This follows from Grothendieck’s theorem by embedding Y in some Pn and
showing that “X is a closed subscheme of Y ” is a closed condition.
In particular, HilbY is locally of finite type. But it is not of finite type if
dim(Y ) > 0, since HilbY contains disjoint non-empty open subschemes Um
(m ≥ 1) parameterizing the finite subsets of Y (k) with m elements.
In fact, each Um is open in the Hilbert scheme Hilbm

Y representing flat
families of finite subschemes of length m of Y ; the corresponding Hilbert
polynomial is P(t) = m.



Representability of the automorphism functor
We return to the automorphism functor AutX , where X is a projective
scheme. For any scheme S, the graph construction identifies AutX (S) with
the set of closed subschemes Γ ⊂ X × X × S such that the two projections
Γ→ X × S are isomorphisms. Thus, the projection Γ→ S is obtained from
either projection X ×S → S via an isomorphism over S. So Γ is flat over S.
This identifies AutX with a subfunctor of the Hilbert functor HilbX×X .
Next, one shows that AutX is represented by an open subscheme AutX of
HilbX×X . For this, denoting by pr1, pr2 : X × X → X the projections, one
shows that “pri is an isomorphism” is an open condition. Since HilbX×X is
locally of finite type, its open subscheme AutX is locally of finite type, too.
In particular, the neutral component Aut0

X is open in the connected
component of the diagonal in HilbX×X , which is a projective scheme. So
the closure of Aut0

X in HilbX×X is a projective variety.
If X = Pn then AutX is the projective linear group PGLn+1 (the quotient of
the general linear group GLn+1 by its center, the scalar matrices). This is a
connected affine algebraic group. Its closure in HilbX×X is the variety of
complete collineations (M. Thaddeus, Math. Ann. 1999).



Examples of automorphism groups
We now assume that the field k is (algebraically closed) of characteristic 0.
Then AutX is a smooth variety and hence we may identify it with Aut(X ).
1) Let X be a finite scheme, i.e., X = Spec(A) where A is a k-algebra of
finite dimension as a k-vector space. Then Aut(X ) is the closed subgroup
scheme of the general linear group GL(A) consisting of those linear maps f
such that f (ab) = f (a)f (b) for all a, b ∈ A. In particular, Aut(X ) is affine.

2) Let X be an elliptic curve, i.e., a smooth projective curve of genus 1.
Choosing a k-rational point 0 ∈ X defines a commutative algebraic group
law + on X with neutral element 0. In particular, for any x ∈ X , we have
the translation τx : X −→ X , y 7−→ x + y . This yields a homomorphism
τ : X → Aut(X ). Thus, every f ∈ Aut(X ) can be written uniquely as
τx ◦ g , where x ∈ X and g ∈ Aut(X ) satisfies g(0) = 0. Then g is a
homomorphism, and hence gτxg−1 = τg(x). It follows that
Aut(X ) ' X o Aut(X , 0) via (x , g) 7→ τx ◦ g . Also, Aut(X , 0) is a finite
group of order 2, 4 or 6.
In particular, Aut0(X ) ' X is not affine. Moreover, π0 Aut(X ) ' Aut(X , 0)
is non-trivial, and hence Aut(X ) is a non-connected algebraic group.



3) Let X be a smooth projective curve of genus g .
If g = 0 then X ' P1 and Aut(X ) ' PGL2 acting via(
a b
c d

)
· [x : y ] = [ax + by : cx + dy ].

If g = 1 then X is an elliptic curve (see Example 2).
If g ≥ 2 then Aut(X ) is a finite group of order ≤ 84(g − 1). Moreover,
every finite group can be obtained in this way (Hurwitz, Math. Ann. 1893).

4) Let X = Y × Y , where Y is an elliptic curve with origin 0. Then X is a
commutative algebraic group with neutral element (0, 0).
One shows as above that Aut(X ) ' X o Aut(X , (0, 0)), where
Aut(X , (0, 0)) is a discrete group. Thus, we have again Aut0(X ) ' X and
π0 Aut(X ) ' Aut(X , (0, 0)).
But now Aut(X , (0, 0)) is infinite, as it contains the group Z acting via
n · (y1, y2) = (y1 + ny2, y2). Thus, Aut(X ) is not of finite type.
In fact, π0 Aut(X ) ⊃ GL2(Z) acting via linear combinations of y1, y2.
Moreover, equality holds if and only if End(Y ) = Z, i.e., Y has no complex
multiplication.



5) Let X be an abelian variety, i.e., an algebraic group which is a projective
variety (for instance, an elliptic curve as in Example 3, or a product of such
curves as in Example 4). Then the group law of X is commutative and one
obtains as in these examples Aut0(X ) ' X , π0 Aut(X ) ' Aut(X , 0).
Moreover, the group Aut(X , 0) is finitely generated by a result of Borel and
Harish-Chandra (Ann. Math. 1962).

6) It has been a folklore conjecture that the group π0 Aut(X ) is finitely
generated for any smooth projective variety X . But this was disproved by
Lesieutre via a counterexample in dimension 6 (Invent. Math. 2018)
Then Tien-Cuong Dinh and Keiji Oguiso constructed a smooth projective
surface X over C such that Aut(X ) is discrete and not finitely generated
(Adv. Math. 2020).
Also, for any integer n ≥ 3, there exists a smooth projective rational variety
X of dimension n over C, such that Aut(X ) is discrete and not finitely
generated (Dinh, Oguiso and Xun Yu, arXiv:2002.04737).
It is unknown whether there exists a smooth projective rational surface
with this property.



Two general results
We consider a projective scheme X over an (algebraically closed) field k of
characteristic 0.

Proposition
If X is a curve, then Aut(X ) is an algebraic group.
Equivalently, π0 Aut(X ) is finite. To prove this, one shows that the graphs
of automorphisms have only finitely many Hilbert polynomials, by using the
Riemann-Roch theorem.

Theorem
There exists a homomorphism ρ : π0 Aut(X ) −→ GLr (Z) with finite kernel.
The homomorphism ρ is constructed via the action of automorphisms on
divisors. More specifically, the numerical equivalence classes of Cartier
divisors on X form a free abelian group N1(X ) of finite rank: the Picard
number of X . Moreover, the natural action of Aut(X ) on N1(X ) factors
through an action of π0 Aut(X ). The class of a hyperplane has a finite
stabilizer for this action.



Corollary
There exists a positive integer N = N(X ) such that every finite subgroup
of π0 Aut(X ) has order at most N.
Indeed, this holds for GLr (Z) (Minkowski, J. Crelle, 1887). It would be
very interesting to express N(X ) in terms of numerical invariants of X .
This is known for special classes of projective varieties.

Corollary
The intersection of all subgroups of finite index of π0 Aut(X ) is finite.
Indeed, the intersection of all subgroups of finite index of GLr (Z) is trivial:
consider the kernels of the “reduction mod N” homomomorphisms
GLr (Z)→ GLr (Z/NZ).
It is an open question whether π0 Aut(X ) is residually finite, i.e., the
intersection of its subgroups of finite index is trivial.
One may also ask whether π0 Aut(X ) is topologically finitely generated,
i.e., there are finitely many automorphisms f1, . . . , fm which generate every
finite quotient group.


