Hồ Minh Toàn
TS. NCVC
Phòng Giải tích toán học
|
Liên hệ
Phòng làm việc: 105, Nhà A5
Điện thoại: +84 (02)4 37563474 /105
Email: hmtoan AT math.ac.vn
Lý lịch khoa học
Qúa trình đào tạo
- Cử nhân năm 1996, ĐH Quy Nhơn
- Bảo vệ Luận án Tiến sĩ tại Đại hoc Toronto, Canada năm 2006
Quá trình công tác
DANH SÁCH CÔNG TRÌNH
Danh sách trong Mathscinet
Danh sách gần đây1 | Du Thi Thu Trang, Hồ Minh Toàn, Hoang Phi Dung, Representation of positive polynomials on a generalized strip and its application to polynomial optimization, Optimization Letters 18 (2024), no. 7, 1727–1746, (SCI-E, Scopus). |
2 | Hồ Minh Toàn, Vũ Thế Khôi, Metrics induced by certain Hilbert-Schmidt fidelities on positive semi-definite matrices, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 22 (2023) 790-799, (SCI-E, Scopus). |
3 | Vũ Thế Khôi, Hồ Minh Toàn, Le Cong Trinh, Dinh Trung Hoa, Optimization of quantum divergences between unitary orbits, Quantum Information Processing, 22 (2023), 18 pages, (SCI-E, Scopus). |
4 | Vũ Thế Khôi, Hồ Minh Toàn, Metric properties of alternative fidelities, Quantum Information and Computation 22, No. 9&10 (2022) 790 - 799, (SCI-E, Scopus). |
5 | Vũ Thế Khôi, Hồ Minh Toàn, On the surjectivity of certain word maps on SU(2), Journal of Algebra and Its Applications 21 (2022), 2250037, (SCI-E, Scopus). |
6 | Du Thu Trang, Hồ Minh Toàn, Nguyễn Thị Hồng, Algebra of Polynomials Bounded on a Semi-algebraic Set [f≤r], Acta Mathematica Vietnamica, 46 (2021), pages 821–838, Scopus. |
7 | Trung Hoa Dinh, Hồ Minh Toàn, Cong Trinh Le , Positivstellensätze for polynomial matrices, Positivity volume 25 (2021), pages 1295–1312, SCI-E, Scopus. |
8 | Du Thi Thu Trang, Hồ Minh Toàn, Polynomial optimization on some unbounded closed semi-algebraic sets, Journal of Optimization Theory and Applications volume 183, pages 352–363(2019), (SCI-E, Scopus). |
9 | Trung Hoa Dinh, Hồ Minh Toàn, Cong Trinh Le, Bich Khue Vo, Two trace inequalities for operator functions, Mathematical Inequalities and Applications, 22 (2019), 1021-1026, SCI(-E), Scopus. |
10 | Trung Hoa Dinh, Hồ Minh Toàn, Tiến Sơn Phạm, A Note on Nondegenerate Matrix Polynomials, Acta Mathematica Vietnamica, 43 (2018), 761–778, (Scopus). |
11 | Hồ Minh Toàn, Hà Huy Vui, Positive polynomials on nondegenerate basic semi-algebraic sets, Advances in Geometry, 16 (2016), 497-510,SCI(-E); Scopus. |
12 | Dinh Trung Hoa, Du Thi Hoa Binh, Hồ Minh Toàn, On some matrix mean inequalities with Kantorovich constant, Scientiae Mathematicae Japonicae (2015) (In Editione Electronica). |
13 | Hồ Minh Toàn, Dinh T. Hoa, Hiroyuki Osaka, Interpolation classes and matrix means. Banach Journal of Mathematical Analysis, 9 (2015), 140-152, SCI(-E), Scopus. |
14 | Dinh T. Hoa, Hồ Minh Toàn, Hiroyuki Osaka, Matrix means of finite orders, RIMS Kokyuroku, 1893 (2014), 57-66. |
15 | Dinh T. Hoa, Du T. H. Binh, Hồ Minh Toàn, On some inequalities with matrix means, RIMS Kokyuroku, 1893 (2014), 67-71. |
16 | Dinh Trung Hoa, Hồ Minh Toàn, Hiroyuki Osaka, The linear span of projections in AH algebras and for inclusions of C∗-algebras. Abstract and Applied Analysis 2013, Art. ID 204319, 12 pp, Scopus. |
17 | Dinh Trung Hoa, H. Osaka, Hồ Minh Toàn, On generalized powers-stormer’s inequality, Linear Algebra and Its Application, 438 (2013), 242 -- 249, SCI(-E); Scopus. |
18 | Hồ Minh Toàn, Classification of certain inductive limit type actions on approximate interval algebras, Journal of the Ramanujan Mathematical Society 25 (2010), 329 -- 343, SCI(-E); Scopus. |
19 | George A. Elliott, Hồ Minh Toàn, Andrew S. Toms, A class of simple $C*-$-algebras with stable rank one, J. Funct. Anal. 256 (2009), 307-322. |
20 | Hồ Minh Toàn, On the property SP of certain AH algebras. C. R. Math. Acad. Sci. Soc. R. Can. 29 (2007), 81–86. |
Tin tức nổi bật
01/11/24, Hội nghị, hội thảo: School and Workshop “Selected topics in Arithmetic Algebraic Geometry” |
29/11/24, Hội nghị, hội thảo: ICTP and Vietnamese Science: Celebrating 60 Years of Collaborations |
02/12/24, Hội nghị, hội thảo: International workshop on “Commutative Algebra and related Combinatoric structures” |