Đào Quang Khải


TS. NCV

Phòng Phương trình vi phân
Hướng nghiên cứu: Phương trình vi phân


Liên hệ
Phòng làm việc: 309, Nhà A5
Điện thoại: +84 024 37563474 / 147
Email: dqkhai AT math.av.vn

Nơi sinh: Hòa Bình


Lý lịch khoa học
:

2010: Thạc sĩ, Viện Toán học, Hà Nội, Việt Nam

Chuyên ngành: Phương trình vi phân
Thời gian công tác bắt đầu công tác tại Viện 2011

Các lĩnh vực quan tâm: Giải tích điều hòa, phương trình đạo hàm riêng.

DANH SÁCH CÔNG TRÌNH

Danh sách trong Mathscinet

Danh sách gần đây
1V. T. T. Duong, Đào Quang Khải, Nguyễn Minh Trí, On regularity of weak solutions for the Navier-Stokes equations in general domains, Mathematische Nachrichten. 294 (2021) no. 12, 201900407. (SCI-E, Scopus).
2Ngo Van Giang, Đào Quang Khải, Some new regularity criteria for the Navier–Stokes equations in terms of one directional derivative of the velocity field, Nonlinear Analysis: Real World Applications, 62 (2021), 103379, (SCI-E, Scopus).
3V.T.T. Duong, Đào Quang Khải, Nguyễn Minh Trí, Time decay rates of the L^3-Norm for strong solutions to the Navier-Stokes equations in {\mathbb R^3}, Journal of Mathematical Analysis and Applications, 485 (2020) 123864, SCI(-E); Scopus.
4Đào Quang Khải, Well-Posedness for the Navier-Stokes Equations with Datum in the Sobolev Spaces, Acta Mathematica Vietnamica 42(2017), 431–443, . Scopus.
5Đào Quang Khải, Nguyễn Minh Trí, Well-posedness for the Navier–Stokes equations with data in homogeneous Sobolev–Lorentz spaces, Nonlinear Analysis, 149 (2017), 130-145, SCI(-E); Scopus.
6Đào Quang Khải, Nguyễn Minh Trí, On the Initial Value Problem for the Navier-Stokes Equations with the Initial Datum in Critical Sobolev and Besov Spaces, Journal of Mathematical Sciences University of Tokyo, 23(2016), 499-528.
7Đào Quang Khải, Nguyễn Minh Trí, Well-posedness for the Navier–Stokes equations with datum in Sobolev–Fourier–Lorentz spaces, Journal of Mathematical Analysis and Applications, 437 (2016), 754–781, SCI(-E); Scopus.
8Đào Quang Khải, Nguyễn Minh Trí, On the Hausdorff dimension of the singular set in time for weak solutions to the nonstationary Navier-Stokes equations on torus, Vietnam Journal of Mathematics, 43 (2015), 283-295, Scopus.
9Đào Quang Khải, Nguyễn Minh Trí, Solutions in mixed-norm Sobolev–Lorentz spaces to the initial value problem for the Navier–Stokes equations, Journal of Mathematical Analysis and Applications 417 (2014) 819-833, SCI(-E); Scopus.
10Đào Quang Khải, Nguyễn Minh Trí, On general axisymmetric explicit solutions for the Navier-Stokes equations,  International Journal of Evolution Equations,  6 (2103), 325 - 336.
Tiền ấn phẩm
1IMH20210602, N.V. Giang, Đào Quang Khải, Some new regularity criteria for the Navier-Stokes equations in terms of one directional derivative of the velocity field, to appear in Nonlinear Analysis: Real World Applications.
2IMH20191104, V. T. T. Duong, Đào Quang Khải, Nguyễn Minh Trí, On regularity of weak solutions for the Navier-Stokes equations in general domains
3IMH20160304, Đào Quang Khải, Vu Thi Thuy Duong, On the initial value problem for the Navier-Stokes equations with the initial datum in the Sobolev spaces, preprint arXiv:1603.04219.
4IMH20151207, Đào Quang Khải, Nguyễn Minh Trí, The existence and space-time decay rates of strong solutions to Navier-Stokes Equations in weighed $L^\infty \left( {|x|^\gamma dx} \right) \cap L^\infty \left( {|x|^\beta dx} \right)$ spaces
5IMH20151206, Đào Quang Khải, Nguyễn Minh Trí, The existence and decay rates of strong solutions for Navier-Stokes Equations in Bessel-potential spaces