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1 Introduction

In this paper we study the following parametric optimal control problem. Determine a

control vector u ∈ Lp([0, 1],Rm) with 1 < p < ∞ and a trajectory x ∈ W 1,1([0, 1],Rn)

which minimize the cost function

J(x, u, µ) :=

∫ 1

0

f(t, x(t), u(t), µ(t))dt (1)

with the state equationẋ(t) = A(t, x(t)) +B(t, x(t))u(t) + T (t, λ(t)) a.e. t ∈ [0, 1],

x(0) = x0
(2)

and the control constraint

a(t) ≤ u(t) ≤ b(t) a.e. t ∈ [0, 1]. (3)
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Here (µ, λ) is a couple of parameters which belongs to Lr([0, 1],Rk) × Ls([0, 1],Rl) with

1 ≤ r, s ≤ ∞, f : [0, 1] × Rn × Rm × Rk → R ∪ {+∞} is a function, A(t, x) is an n × 1

matrix, B(t, x) is an n×m matrix and T (t, λ) is an n×1 matrix and a, b ∈ Lp([0, 1],Rm).

Note that constraint (3) means ai(t) ≤ ui(t) ≤ bi(t) for i = 1, 2, ...,m.

Recall that W 1,1([0, 1],Rn) is a Sobolev space which consists of absolutely continuous

functions x : [0, 1] → Rn such that ẋ ∈ L1([0, 1],Rn) and C([0, 1],Rn) is a Banach space

of continuous vector functions y : [0, 1]→ Rn. Their norms are given by

‖x‖1,1 = |x(0)|+ ‖ẋ‖1, ‖y‖0 = sup
t∈[0,1]

|y(t)|,

respectively. Let us put

X = W 1,1([0, 1],Rn), U = Lp([0, 1],Rm), Z = X × U,
M = Lr([0, 1],Rk), Λ = Ls([0, 1],Rl)

and define K(λ) for λ ∈ Λ by setting

K(λ) = {z = (x, u) ∈ X × U |(2) and (3) are satisfied}. (4)

Then (1)− (3) can be reformulated in the form

P (µ, λ)

J(z, µ)→ inf,

z ∈ K(λ).
(5)

Throughout this paper we denote by S(µ, λ) the solution set of (1) − (3) or P (µ, λ)

corresponding to parameter (µ, λ). We denote by (µ, λ) the reference point and call

P (µ, λ) the unperturbed problem.

Our main concern is to investigate the behavior of S(µ, λ) when (µ, λ) varies around

(µ, λ). This problem has been interesting to several authors in the last decade. For papers

which have a close connection to the present work, we refer the readers to [8], [9], [15]-[19]

and the references given therein.

It is known that when J(·, ·, µ) is strongly convex for all µ and K(λ) is a convex

set, then the solution map of (5) is single-valued. In this case, under certain conditions,

Dontchev [9] showed that the solution map is continuous with respect to parameters.

Recently Malanowski [15]-[19] showed that if weak second-order optimality conditions

and standard constraints qualifications are satisfied at the reference point, then the so-

lution map is a Lipschitz continuous function of parameters. The obtained results in

[15]-[19] were proved by techniques of implicit function theorem. Note that the obtained

results in [15]-[19] are of problems subject to state constraints without control constraints.

When conditions mentioned above are invalid, the solution map may not be singleton.

In this situation, we have to use tools of set-valued analysis to treat the problem. Such

a treatment has been developed recently by Kien et al. [12] and [13]. In [12] and [13]

2



the authors studied the lower semicontinuous property of the solution map to problem

(1) − (3) in the case where the state equation is linear and the cost function is convex

in both variables. For this case, the authors showed that if the unperturbed problem is

good enough, then the solution map is lower semicontinuous at the reference point.

In this paper we continue to develop the method in [12] and [13] in order to study

the upper semicontinuity and continuity of the solution map S(µ, λ) of problem (1)− (3).

Here in problem (1) − (3), the state equation is nonlinear and the cost function is not

required to be convex in both variables.

It is noted that in the case of finite-dimension spaces, the upper semicontinuity of

the solution map to parametric mathematical programming problems is easy to obtain.

The reason is that the upper semicontinuity of S is equivalent to the closeness of its

graph. It is well known that if S has a closed graph and uniformly compact, that is, there

exists a compact set D in the strong topology such that S(µ, λ) ⊂ D for all (µ, λ) in a

neighborhood of (µ, λ) then S is upper semicontinuous at (µ, λ) (see [4, Corollary, p.112]

and [11, Theorem 3.1]). Unfortunately, in the infinite-dimensional setting of problem

(1)–(3), although each set S(µ, λ) is a weakly compact set, the family {S(µ, λ)} is not

strongly uniformly compact. Hence, the closeness of graph of S is far from the upper

semicontinuity of S.

In our paper, by using the direct method, the Pontryagin Maximum Principle and

exploiting structures of the problem, we show that under certain conditions, the solution

map is (s, w)−upper semicontinuous at reference point (see Definition 2.1 for (s, w)−upper

semicontinuity). Besides, we also show that if the unperturbed problem is good enough,

then the solution map is (s, s)−continuous with respect to parameters at the reference

point. It is worth pointing out that our proofs are based on the direct method and

analyzing first order optimality conditions (Pontryagin’s Principle) of the problem. We

do not use second-order optimality conditions for the proof as usual.

The paper is organized as follows. In Section 2, we recall some notions of set-valued

analysis and state our main results. Section 3 is destined for some auxiliary results. The

proofs of main results are given in Section 4.

2 Statement of main result

Let us assume that F : E1 ⇒ E2 is a multifunction between topological spaces. We denote

by domF and gphF the effective domain and the graph of F , respectively, where

domF := {z ∈ E1|F (z) 6= Ø}

and

gphF := {(z, v) ∈ E1 × E2|v ∈ F (z)}.
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A multifunction F is said to be lower semicontinuous at z0 ∈ E1 if for any open set V0 in

E2 satisfying F (z0)∩V0 6= Ø, there exists a neighborhood G0 of z0 such that F (z)∩V0 6= Ø

for all z ∈ G0 (see [5, Definition 5.1.15, p. 173]). F is said to be upper semicontinuous

at z0 ∈ E1 if for any open set V in E2 satisfying F (z0) ⊂ V , there exists a neighborhood

G of z0 such that F (z) ⊂ V for all z ∈ G. If F is lower semicontinuous and upper

semicontinuous at z0, we say F is continuous at z0.

Definition 2.1 (a) The solution map S : M×Λ ⇒ C([0, 1],Rn)×Lp([0, 1],Rm) is said to

be (s, w)−upper semicontinuous at (µ, λ) if for any open set V1 in C([0, 1],Rn) and weakly

open set V2 in Lp([0, 1],Rm) satisfying S(µ, λ) ⊂ V1×V2, there exist a neighborhood U1 of

µ and a neighborhood U2 of λ such that

S(µ, λ) ⊂ V1 × V2,∀(µ, λ) ∈ U1 × U2.

(b) S is said to be (s, w)−lower semicontinuous at (µ, λ) if for any open set V ′1 in

C([0, 1],Rn) and weakly open set V ′2 in Lp([0, 1],Rm) satisfying S(µ, λ) ∩ (V ′1 × V ′2) 6= Ø,

there exist a neighborhood U ′1 of µ and a neighborhood U ′2 of λ such that

S(µ, λ) ∩ (V ′1 × V ′2) 6= Ø,∀(µ, λ) ∈ U ′1 × U ′2.

If S is both (s, w)−upper semicontinuous at (µ, λ) and (s, w)−lower semicontinuous at

(µ, λ), then S is called (s, w)−continuous at (µ, λ).

In Definition 2.1, if V2 and V ′2 are strongly open sets of Lp([0, 1],Rm), we say S is

(s, s)−upper semicontinuous and (s, s)−lower semicontinuous at (µ, λ), respectively. It is

clear that if S is (s, s)− upper semicontinuous at (µ, λ) then S is (s, w)− upper semicon-

tinuous at (µ, λ). This implication is also true for lower semiconinuity of S.

In the sequel, we need the following assumptions on f, A,B and T .

(H1) f(·, x, u, µ) is a Carathéodory function, that is, for a.e. t ∈ [0, 1], f(t, ·, ·, ·) is

continuous in (x, u, µ) and for each fixed (x, u, µ) ∈ Rn×Rm×Rr, the function f(·, x, u, µ)

is measurable on [0, 1].

(H2) Growth and dominated condition: there exist constants αi ≥ 0 with i = 1, 2, 3 and

a nonnegative function ϑ ∈ L1([0, 1],R) such that

|f(t, x, u, µ)| ≤ ϑ(t) + α1|x|β1 + α2|u|β2 + α3|µ|β3 ,

where 0 ≤ β1, 1 ≤ β2 ≤ p, 1 ≤ β3 ≤ r and 0 ≤ β3 when r =∞.

(H3) Convexity: the function u 7→ f(t, x, u, µ) is convex for all (t, x, µ) ∈ [0, 1]×Rn×Rr.

(H4) The entries of A(t, x) and B(t, x) are continuous and continuously differentiable in

x such that Ax(·, ·) and Bx(·, ·) are continuous. Also, the entries of T (t, λ) are continuous.
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Besides, there exist nonnegative functions φ ∈ L1([0, 1],R), ψ ∈ Lq([0, 1],R) and χ ∈
Ls
′
([0, 1],R) such that

|A(t, x1)− A(t, x2)| ≤ φ(t)|x1 − x2|, a.e. t ∈ [0, 1],∀x1, x2 ∈ Rn, (6)

|B(t, x1)−B(t, x2)| ≤ ψ(t)|x1 − x2|, a.e. t ∈ [0, 1],∀x1, x2 ∈ Rn, (7)

|T (t, λ1)− T (t, λ2)| ≤ χ(t)|λ1 − λ2|, a.e. t ∈ [0, 1],∀λ1, λ2 ∈ Rl. (8)

Here q and s′ are conjugate numbers of p and s, respectively. The norm of n×m matrix

B(t, x) = [bij(t, x)] is defined by |B(t, x)|2 =
∑n

i=1

∑m
j=1 |bij(t, x)|2.

We are ready to state our main results.

Theorem 2.1 Suppose that assumptions (H1) − (H4) are fulfilled. Then the following

assertions are valid:

(i) S(µ, λ) 6= Ø for all (µ, λ) ∈M × Λ;

(ii) S(·, ·) is (s, w)−upper semicontinuous at (µ, λ).

From Theorem 2.1 one may ask whether the solution map S(·, ·) is (s, s)−upper semi-

continuous. The next theorem says that if the unperturbed problem is good enough and

the space of parameters µ is good enough, then the solution map is (s, s)−upper semi-

continuous and (s, s)-continuous at (µ, λ). For this we need the following strengthened

assumption.

(H5) Assume that r = ∞ and the function (x, u) 7→ L(t, x, u, µ) is Fréchet continuously

differentiable for a.e. t ∈ [0, 1] and µ ∈ µ(t) + εBk(0, 1) for some ε > 0, where Bk(0, 1) is

the unit ball in Rk. Furthermore, the following conditions are fulfilled:

(i) There exist a continuous function ki : [0, 1]×R3 → R, positive numbers si with i = 1, 2,

0 ≤ η ≤ p and 0 ≤ θ ≤ p/q such that

|fx(t, x, u, µ)− fx(t, x, u, µ(t))| ≤ k1(t, |x|, |µ|, |µ(t)|)|u|η|µ− µ(t)|s1 (9)

and

|fu(t, x, u, µ)− fu(t, x, u, µ(t))| ≤ k2(t, |x|, |µ|, |µ(t)|)|u|θ|µ− µ(t)|s2 (10)

for a.e. t ∈ [0, 1], x ∈ Rn, u ∈ [a(t), b(t)] and µ ∈ µ(t) + εBk(0, 1).

(ii) There exists a nonnegative function k3(·) ∈ L1([0, 1],R) such that

|fx(t, x1, u1, µ(t))− fx(t, x2, u2, µ(t))| ≤ k3(t)|x1 − x2| (11)

for a.e. t ∈ [0, 1] and for all xi ∈ Rn, ui ∈ Rm with i = 1, 2.

(iii) There exists a positive number α such that for any (x̂, û) ∈ S(µ, λ) one has

〈fu(t, x, v, µ(t))− fu(t, x̂(t), û(t), µ(t)), v − û(t)〉 ≥ α|v − û(t)|p (12)

for a.e. t ∈ [0, 1], for all v ∈ [a(t), b(t)] and x ∈ Rn.

Under this extra assumption, we have
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Theorem 2.2 Suppose that assumptions (H1) − (H5) are fulfilled. Then the mapping

S(·, ·) is (s, s)−upper semicontinuous at (µ, λ). Moreover if S(µ, λ) is a singleton, then

S(·, ·) is (s, s)−continuous at (µ, λ).

Notice that assumptions (H1) − (H3) in Theorem 2.1 ensure that J(·, ·, µ) is weakly

lower semicontinuous for each µ ∈ M . While assumption (H4) guarantees that for each

λ ∈ Λ and u ∈ U , the state equation has a unique global solution x ∈ W 1,1([0, 1],Rn).

Condition (ii) in (H5) says that fx is a Lipschitz function which depends only on x.

Condition (iii) in (H5) requires that the function f(t, x, ·, µ(t)) is strongly convex in u.

We can give several examples under which assumptions (H1)−(H5) are fulfilled as follows.

Example 2.1 Let n = m = k = l = 1 and p = r = s = 2. Then problem P (µ, λ) with

f(t, x, u, µ) = x3 + u2 + µu,

A(t, x) = t+
√

1 + x2, B(t, x) = tx, T (t, λ) = λ

satisfies all assumptions (H1)− (H4).

In order to verify (H4) for A(t, x) we use the Lagrange Theorem. Then for all x, y ∈ R,

we have

|A(t, x)− A(t, y)| = |
√

1 + x2 −
√

1 + y2| ≤ |ξ|√
1 + ξ2

|x− y| ≤ |x− y|,

where ξ = θx+ (1− θ)y with θ ∈ [0, 1].

Example 2.2 Let m = n = k = l = 2 and p, r, s ∈ (1,∞). Assume that

f(t, x, u, µ) = x1µ1 + x2µ2 − x21 − x22 + |u|p,

A(t, x) =

(
x1

sinx2

)
, B(t, x) =

(
1 x2

sinx1 0

)
, T (t, λ) =

(
tλ1

t2λ2

)
,

where x = (x1, x2), λ = (λ1, λ2) and µ = (µ1, µ2). Then P (µ, λ) satisfies assumptions

(H1)− (H4).

In order to verify (H3) we use Young’s Inequality:

|f(t, x, u, µ)| ≤ |x||µ|+ |u|p ≤ 1

r′
|x|r′ + 1

r
|µ|r + |u|p, (13)

where 1
r′

+ 1
r

= 1 and x = (x1, x2).

Example 2.3 Let m = n = k = l = 1 and p = 2, s = 1, r =∞. We consider the problem
J(x, u, µ) =

∫ 1

0

(
(u(t)− µ(t))2 − 1

2
x2(t)− µ(t)u(t)x(t)

)
dt→ inf,

ẋ(t) = u(t) + λ(t),

x(0) = 0,

−1 ≤ u(t) ≤ 1.

(14)

6



Here we assume that µ(t) = 0, λ(t) = 0 for all t ∈ [0, 1]. From the above, we can verify

that assumptions (H1) − (H5) of the Theorem 2.1 are fulfilled. In order to check (H5)

we notice that f(t, x, u, µ) = (u − µ)2 − 1
2
x2 − µxu, fx = x, fu = 2(u − µ) − µx. Hence

conditions (i) and (ii) in (H5) are valid. For condition (iii), we have

〈fu(t, x, u, µ)− fu(t, x, u, µ), u− u〉 = 2|u− u|2. (15)

Note that J is convex in u and concave in x. We now assume that (x(µ, µ), u(µ, µ)) ∈
S(µ, λ). Then it must satisfy the Pontryagin Maximum Principle. According to the

Pontryagin Maximum Principle (see [10, Theorem 1, p. 134 and p. 139]), there exists an

absolute continuous function φ(t) such that the following conditions are valid:

(i) the adjoint equation: φ̇ = −x,

φ(1) = 0.
(16)

(ii) the maximum principle:

φ(t)u(t)− u2(t) +
1

2
x2(t) = max

−1≤u≤1

(
φ(t)u− u2 +

1

2
x2(t)

)
,

from which we see that

u(t) =


φ(t)
2

if − 1 ≤ φ(t)
2
≤ 1,

−1 if φ(t)
2
< −1,

1 if φ(t)
2
> 1.

From the state equation, we have x(t) =
∫ t
0
u(s)dt. This implies that

|x(t)| ≤
∫ 1

0

|u(s)|ds ≤ 1.

On the other hand, from the adjoint equation, we have φ(t) = −
∫ t
1
x(s)ds. It follows that

|φ(t)| ≤
∫ 1

0

|x(s)|ds ≤ 1, ∀t ∈ [0, 1].

Therefore we have u(t) = φ(t)
2

. Combining this with the adjoint equation, yields

φ̇(t) = −
∫ t

0

u(s)ds = −1

2

∫ t

0

φ(s)ds.

It follows that  φ̈(t) = −1
2
φ(t),

φ̇(0) = 0, φ(1) = 0.

Hence φ(t) = a cos t√
2

+ b sin t√
2

and so φ(t) = 0 for all t ∈ [0, 1]. Consequently, u(t) =

0, x(t) = 0 and S(µ, λ) = {(0, 0)}. By Theorem 2.2, S(µ, λ) is continuous at (0, 0).
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To end this section, we give an example showing that although the unperturbed prob-

lem has a unique solution, the perturbed problems may have several solutions and the

solution map is continuous at a reference point.

Example 2.4 Suppose that m = n = l = k = 1, p = 4, r = s = ∞ and (µ, λ) = (0, 0).

We consider problem P (µ, λ) of finding u ∈ L4([0, 1],R) and y ∈ W 1,1([0, 1],R) such that

J(x, u, µ) =

∫ 1

0

f(t, x(t), u(t), µ(t))dt→ inf (17)

with the state equation

ẋ = x+ xu+ λ, x(0) = 1 (18)

and pointwise constraints

0 ≤ u(t) ≤ 1, (19)

where f is given by

f(t, x, u, µ) =
1

2

[
1− sign(u+ µ2)

]
(u+ µ2)4 +

1

2

[
1 + sign(u− µ2)

]
(u− µ2)4.

Here sign(u) is defined by

sign(u) =


1 if u > 0

0 if u = 0

−1 if u < 0.

Then we have the following assertions:

(i) P (µ, λ) has unique solution (x, u) = (et, 0).

(ii) If 0 < |µ(t)| ≤ 1, then we have

S(µ, λ) ⊃
{

(x(µ, λ), sµ2(t)), 0 < s < 1
}
,

where x(µ, λ) is solutions of the equation:

ẋ(t) = x(t) + sx(t)µ2(t) + λ(t), x(0) = 1. (20)

In fact, when µ = λ = 0, problem P (0, 0) becomes

J(u, µ) =

∫ 1

0

u4(t)dt→ inf

with constraints 
ẋ = x+ u

x(0) = 1,

0 ≤ u(t) ≤ 1.
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Obviously, S(0, 0) = {(et, 0)}. We now show that P (µ, λ) satisfies (H1)− (H5). It is easy

to see that

f(t, x, u, µ) =


(u+ µ2)4 if u < −µ2

0 if − µ2 ≤ u ≤ µ2

(u− µ2)4 if u > µ2.

Hence

fu(t, x, u, µ) =


4(u+ µ2)3 if u < −µ2

0 if − µ2 ≤ u ≤ µ2

4(u− µ2)3 if u > µ2.

and fx(t, x, u, µ) = 0. Hence assumptions (H1) − (H4) are satisfied. In order to verify

(H5) we need to check conditions (10) and (12). For all x ∈ R and u ∈ [0, 1], we have

fu(t, x, u, µ)− fu(t, x, u, 0) =


4(u+ µ2)3 − 4u3 if u ≤ −µ2

−4u3 if −µ2 ≤ u ≤ µ2

4(u− µ2)3 − 4u3 if u ≥ µ2.

Hence for all x ∈ R, 0 ≤ u ≤ 1 and |µ| ≤ 1, we have∣∣fu(t, x, u, µ)− fu(t, x, u, 0)
∣∣ ≤ 4(µ2)3 + |4(u− µ2)3 − 4u3|

≤ 4µ6 + 12u2µ+ 12|u|µ2 + 4µ6 ≤ 32|µ|.

Consequently, (10) is valid. Also, for all u1, u2 ∈ [0, 1] and x1, x2 ∈ R, we have

(fu(t, x1, u1, 0)− fu(t, x2, u2, 0))(u1 − u2)
= 4(u31 − u32)(u1 − u2) = 4(u1 − u2)2(u21 + u22 + u1u2)

= 4(u1 − u2)2((u1 − u2)2 + 3u1u2) ≥ 4(u1 − u2)4.

Thus condition (12) is fulfilled. Finally, if u(µ, λ) = sµ2 with 0 < s < 1, then J(u, µ) = 0.

Let x(µ, λ) be solutions of (20). Then (x(µ, λ), u(µ, λ)) ∈ S(µ, λ).

3 Auxiliary results

The following lemma gives existence of global solution of (2).

Lemma 3.1 Suppose that assumption (H4) is fulfilled. Then for each u ∈ Lp([0, 1],Rm)

and λ ∈ Ls([0, 1],Rl), equation (2) has a unique solution x ∈ W 1,1([0, 1],Rn).

Proof. Consider the mapping

F (x)(t) = x0 +

∫ t

0

(
A(s, x(s)) +B(s, x(s))u(s) + T (s, λ(s))

)
ds.
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We show that F j is a contraction mapping from C([0, 1],Rn) into itself for j big enough.

We put ω(t) = φ(t) + ψ(t)|u(t)|. Then ω ∈ L1([0, 1],R) and for all x1, x2 ∈ C([0, 1],Rn),

we have

|(F (x1)− F (x2))(t)|

=
∣∣ ∫ t

0

(
A(s, x1(s))− A(s, x2(s)) + [B(s, x1(s))−B(s, x2(s))]u(s)

)
ds
∣∣

≤
∫ t

0

(∣∣(A(s, x1(s))− A(s, x2(s))
∣∣+
∣∣[B(s, x1(s))−B(s, x2(s))]u(s)

∣∣)ds
≤
∫ t

0

(
φ(s)|x1(s)− x2(s)|+ ψ(s)|x1(s)− x2(s)||u(s)|

)
ds

=

∫ t

0

ω(s1)|x1(s1)− x2(s1)|ds1.

Also, we have

|(F 2(x1)− F 2(x2))(t)| ≤
∫ t

0

ω(s1)|F (x1)(s1)− F (x2)(s1)|ds1

≤
∫ t

0

ω(s1)ds1

∫ s1

0

ω(s2)|x1(s2)− x2(s2)|ds2.

Continuing the process, we get

|(F j(x1)− F j(x2))(t)| ≤
∫ t

0

ω(s1)|F j−1x1(s1)− F j−1x2(s1)|ds1

≤
∫ t

0

ds1ω(s1)

∫ s1

0

ds2ω(s2) · · ·
∫ sj−1

0

dsjω(sj)|x1(sj)− x2(sj)|

≤ ‖x1 − x2‖0
∫ t

0

ds1ω(s1)

∫ s1

0

ds2ω(s2) · · ·
∫ sj−1

0

dsjω(sj).

By induction, we can show that∫ t

0

ds1ω(s1)

∫ s1

0

ds2ω(s2) · · ·
∫ sj−1

0

dsjω(sj) =
1

j!

( ∫ t

0

ω(s)ds
)j
.

Consequently, we have

|(F j(x1)− F j(x2))(t)| ≤
1

j!

( ∫ t

0

ω(s)ds
)j‖x1 − x2‖0 ≤ 1

j!

( ∫ 1

0

ω(s)ds
)j‖x1 − x2‖0.

Hence

|F j(x1)− F j(x2)|0 ≤
1

j!

( ∫ 1

0

ω(s)ds
)j‖x1 − x2‖0.

Since 1
j!

( ∫ 1

0
ω(s)ds

)j
< 1 when j is sufficiently large, we see that F j is a contraction

mapping. By the Contraction Mapping Theorem, there exists a unique x ∈ C([0, 1],Rn)
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such that F j(x) = x. By the Contraction Mapping Principle in [10, Chapter 0, p.13] (see

also [14, Lemma 5.4.3, p. 323]), x is also a fixed point of F , that is,

x(t) = x0 +

∫ t

0

(
A(s, x(s)) +B(s, x(s))u(s) + T (s, λ(s))

)
ds.

By (H4), we have

|A(s, x(s)) +B(s, x(s))u(s) + T (s, λ(s))|
≤ φ(s)|x(s)|+ |A(s, 0)|+ (ψ(s)|x(s)|+ |B(s, 0)|)|u(s)|+ χ(s)|λ(s)|+ |T (s, 0)|.

It is easy to see that the function in right hand side belongs to L1([0, 1],R). Hence

|A(·, x(·)) +B(·, x(·))u(·) + T (·, λ(·))| ∈ L1([0, 1],R).

It follows that x ∈ W 1,1([0, 1],Rn) andẋ(t) = A(t, x(t)) +B(t, x(t))u(t) + T (t, λ(t)), a.e. t ∈ [0, 1],

x(0) = x0.

The proof of the lemma is complete. 2

The following lemma shows that K(·) has Lipschitz property.

Lemma 3.2 Suppose that assumption (H4) is fulfilled. Then the set-valued map K(·)
which is defined by (4), has closed values and there exists a constant k0 > 0 such that

K(λ1) ⊂ K(λ2) + k0‖λ1 − λ2‖sBZ , ∀λ1, λ2 ∈ Λ. (21)

Proof. Let zi = (xi, ui) ∈ K(λ) such that zi → z = (x, u) as i → ∞. Then xi → x

uniformly, ẋi → ẋ and ui → u strongly in L1. By passing to subsequence if necessary, we

may assume that ẋi → ẋ and ui → u almost everywhere in t ∈ [0, 1]. Note thatẋi(t) = A(t, xi(t)) +B(t, xi(t))ui(t) + T (t, λ(t))

xi(0) = x0.

By letting i→∞ and using the fact that the entries of A(t, x) and B(t, x) are continuous,

we obtain ẋ(t) = A(t, x(t)) +B(t, x(t))u(t) + T (t, λ(t))

x(0) = x0.

Besides, we have a(t) ≤ u(t) ≤ b(t) for a.e. t ∈ [0, 1]. Hence z ∈ K(λ) and so K(λ) is a

closed set. It remains to prove that K(·) has Lipschitz property.

Fixing any λ1, λ2 ∈ Λ, we show that there exists a constant k0 > 0 such that (21) is

satisfied. By Lemma 3.1, K(λ) 6= Ø for all λ ∈ Λ. Let (x, u) ∈ K(λ1). Then one has

ẋ(t) = A(t, x(t)) +B(t, x(t))u(t) + T (t, λ1(t)), a.e. t ∈ [0, 1]. (22)
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We have to prove that there exists (y, v) ∈ K(λ2) such that

‖(x, u)− (y, v)‖ ≤ k0‖λ1 − λ2‖s

for some absolute constant k0 > 0. Taking v = u and using Lemma 3.1, we see that there

exists y ∈ X such thatẏ(t) = A(t, y(t)) +B(t, y(t))u(t) + T (t, λ2(t)), ∀t ∈ [0, 1],

y(0) = x0.
(23)

By subtracting (22) and (23) and putting w = x− y, we get w(0) = 0 and

ẇ = A(t, x(t))− A(t, y(t)) + [B(t, x(t))−B(t, y(t))]u(t) + T (t, λ1)− T (t, λ2). (24)

From this and (H4), we have

|ẇ| ≤ φ(t)|w(t)|+ ψ(t)|w(t)||u(t)|+ χ(t)|λ1(t)− λ2(t)|
≤ |w(t)|

[
φ(t) + ψ(t)(|a(t)|+ |b(t)|)

]
+ χ(t)|λ1(t)− λ2(t)|

≤ |w(t)|ζ(t) + χ(t)|λ1(t)− λ2(t)|, (25)

where ζ(t) :=
[
φ(t) + ψ(t)(|a(t)|+ |b(t)|)

]
which belongs to L1([0, 1],R).

Since w(t) =
∫ t
0
ẇ(s)ds, we obtain

|w(t)| ≤
∫ t

0

(
|w(s)|ζ(s) + χ(s)|λ1(s)− λ2(s)|

)
ds

≤
∫ t

0

|w(s)|ζ(s)ds+

∫ 1

0

χ(s)|λ1(s)− λ2(s)|ds

≤
∫ t

0

|w(s)|ζ(s)ds+ ‖χ(·)‖s′‖λ1 − λ2‖s.

By Gronwall’s Inequality (see [6, Lemma 18.1.i]), we obtain

|w(t)| ≤ ‖χ(·)‖s′‖λ1 − λ2‖s exp(

∫ 1

0

ζ(s)ds).

Combining this with (25), we have

|ẇ(t)| ≤ ‖χ(·)‖s′ exp(

∫ 1

0

ζ(s)ds)‖λ1 − λ2‖sζ(t) + |χ(t)||λ1(t)− λ2(t)|.

From this and Hölder’s Inequality, we have

‖ẇ‖1 ≤ ‖χ(·)‖s′ exp(

∫ 1

0

ζ(s)ds)‖ζ‖1‖λ1 − λ2‖s + ‖χ(·)‖s′‖λ1 − λ2‖s.

Define

k0 = ‖χ(·)‖s′ exp(

∫ 1

0

ζ(s)ds)‖ζ‖1 + ‖χ(·)‖s′ . (26)

Then we have

‖(x, u)− (y, v)‖ = ‖x− y‖1,1 = ‖w‖1,1 = |w(0)|+ ‖ẇ‖1 ≤ k0‖λ1 − λ2‖s.

The proof of the lemma is complete. 2
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Lemma 3.3 Suppose that assumptions (H4) is valid, {λj} and {(xj, uj)} are sequences

in Λ and Z, respectively. Suppose that (xj, uj) ∈ K(λj), λj → λ strongly in Ls([0, 1],Rl),

xj → x uniformly on [0, 1], ẋj ⇀ ẋ weakly in L1([0, 1],Rn) and uj ⇀ u weakly in

Lp([0, 1],Rm). Then one has (x, u) ∈ K(λ).

Proof. By assumption, we have

ẋj(t) = A(t, xj(t)) +B(t, xj(t))uj(t) + T (t, λj(t)). (27)

In order to complete the proof, we need to show that

A(·, xj(·)) +B(·, xj(·))uj(·) + T (·, λj(·)) ⇀ A(·, x) +B(·, x)u+ T (·, λ) (28)

weakly in L1([0, 1],Rn) when j →∞. In fact, by (H4), we have

|A(t, xj(t))− A(t, x(t))| ≤ φ(t)|xj(t)− x(t)|. (29)

It follows that

‖A(·, xj)− A(·, x)‖1 ≤ ‖φ‖1‖xj − x‖0 → 0 as j →∞.

Hence A(·, xj) → A(·, x) strongly in L1([0, 1],Rn). Similarly, we have T (·, λj) → T (·, λ)

strongly in L1([0, 1],Rn). It remains to prove that B(·, xj(·))uj(·) ⇀ B(·, x(·))u weakly in

L1([0, 1],Rn). For this we write

B(t, xj(t))uj(t)−B(t, x(t))u(t) = [B(t, xj(t))−B(t, x(t))]uj(t) +B(t, x(t))(uj(t)− u(t)).

(30)

By (H4), we have

|[B(t, xj(t))−B(t, x(t))]uj(t)| ≤ ψ(t)|xj(t)− x(t)||uj(t)|.

This implies that

‖(B(·, xj)−B(·, x))uj‖1 ≤ ‖ψ‖q‖uj‖p‖xj − x‖0 → 0 as j →∞

because ‖uj‖p is bounded and ‖xj−x‖0 → 0. Hence (B(·, xj)−B(·, x))uj → 0 strongly in

L1([0, 1],Rn) and so (B(·, xj)− B(·, x))uj ⇀ 0 weakly in L1([0, 1],Rn). For second term,

we take the scalar product with any ϑ ∈ L∞([0, 1],Rn) and get∫ 1

0

(B(t, x(t))(uj(t)− u(t)), ϑ(t))dt =

∫ 1

0

(uj(t)− u(t), B(t, x(t))Tϑ(t))dt,

where B(t, x(t))T is the transporse matrix of B(t, x(t)). By (H4) we have

|B(t, x(t))Tϑ(t))| ≤ |B(t, x(t))T ||ϑ(t)| = |B(t, x(t))||ϑ(t)|
≤ (ψ(t)|x(t)|+ |B(t, 0)|)|ϑ(t)|.
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This implies that B(t, x(t))Tϑ(t) ∈ Lq([0, 1],Rm). Hence∫ 1

0

(B(t, x(t))(uj(t)− u(t)), ϑ(t))dt =

∫ 1

0

(uj(t)− u(t), B(t, x(t))Tϑ(t))dt→ 0

as j →∞ because uj ⇀ u in Lp([0, 1],Rm). From (30), we get

B(·, xj(·))uj(·)−B(·, x(·))u ⇀ 0

weakly in Lp([0, 1],Rn). In summary, assertion (28) is justified. By taking the limit on

two sides of (27), we get

ẋ(t) = A(t, x(t)) +B(t, x(t))u(t) + T (t, λ(t)).

Since xj → x uniformly, we get x(0) = x0. Since the set

{v ∈ Lp([0, 1],Rm) : a(t) ≤ v(t) ≤ b(t)}

is weakly closed, we get a(t) ≤ u(t) ≤ b(t). Hence (x, u) ∈ K(λ). The proof of the lemma

is complete. 2

4 Proof of the main result

• Proof of Theorem 2.1

(i) Existence. For each (µ, λ) ∈M × Λ we define

V (µ, λ) = inf
(x,u)∈K(λ)

J(x, u, µ). (31)

By Lemma 3.1, K(λ) 6= Ø. Taking any (x, u) ∈ K(λ), we have from (H2) that

|f(t, x(t), u(t), µ(t))| ≤ ϑ(t) + α1|x(t)|β1 + α2|u(t)|β2 + α3|µ(t)|β3 (32)

with 1 ≤ β2 ≤ p and 1 ≤ β3 ≤ r. This implies that

V (µ, λ) ≤ J(x, u, µ) ≤ ‖ϑ‖1 + C1‖x‖α0 + C2‖u‖pp + C3‖µ‖rr < +∞

for some constants Ci > 0, i = 1, 2, 3. By definition, there exists a sequence (xj, uj) ∈
K(λ) such that

V (µ, λ) = lim
j→∞

J(xj, uj, µ). (33)

Since (xj, uj) ∈ K(λ), we haveẋj(t) = A(t, xj(t)) +B(t, xj(t))uj(t) + T (t, λ(t))

xj(0) = x0
(34)
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and |uj(t)| ≤ |a(t)|+ |b(t)|. By (H4) we have

|ẋj(t)| ≤ φ(t)|xj(t)|+ |A(t, 0)|+ (ψ(t)|xj(t)|+ |B(t, 0)|)|uj(t)|+ |χ(t)||λ(t)|+ |T (t, 0)|
= |xj(t)|(φ(t) + ψ(t)|uj(t)|) + |A(t, 0)|+ |B(t, 0)||uj(t)|+ χ(t)|λ(t)|+ |T (t, 0)|.

(35)

Since xj(t) = x0 +
∫ t
0
ẋj(s)ds, we get

|xj(t)| ≤|x0|+
∫ t

0

(φ(s) + ψ(s)(|a(s)|+ |b(s)|))|xj(s)|ds

+

∫ t

0

(
|A(s, 0)|+ |B(s, 0)|(|a(s)|+ |b(s)|) + χ(s)|λ(s)|+ |T (s, 0)|

)
ds

≤
∫ t

0

(φ(s) + ψ(s)(|a(s)|+ |b(s)|))|xj(s)|ds

+ |x0|+
∫ 1

0

(
|A(s, 0)|+ |B(s, 0)|(|a(s)|+ |b(s)|) + χ(s)|λ(s)|+ |T (s, 0)|

)
ds.

Define

γ1(t) = φ(t) + ψ(t)(|a(t)|+ |b(t)|),
γ2(t) = |A(t, 0)|+ |B(t, 0)|(|a(t)|+ |b(t)|) + χ(t)|λ(t)|+ |T (t, 0)|,

M1 = |x0|+
∫ 1

0

(
|A(s, 0)|+ |B(s, 0)|(|a(s)|+ |b(s)|) + χ(s)|λ(s)|+ |T (s, 0)|

)
ds.

Then γ1, γ2 ∈ L1([0, 1],R) and we have

|xj(t)| ≤
∫ t

0

γ1(s)|xj(s)|ds+M1.

By Grownwall’s Inequality (see [6, Lemma 18.1.i]) we get

|xj(t)| ≤M1 exp
( ∫ 1

0

γ1(s)ds
)

:= M2. (36)

Hence ‖xj‖0 is bounded. From this and (35), we obtain

|ẋj| ≤M2γ1(t) + γ2(t). (37)

Hence

‖ẋj‖1 ≤M2‖γ1‖1 + ‖γ2‖1. (38)

Besides, if E is a measurable set of [0, 1], then form (37), we have∫
E

|ẋj(t)|dt ≤M2

∫
E

γ1(t)dt+

∫
E

γ2(t)dt. (39)
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It is clear that the right hand side of (39) approaches to 0 as |E| → 0. Hence {ẋj} is

equiabsolutely integrable. From this and [6, Theorem 10.2.i, p. 317], {xj} is equiabsolutely

continous. By Ascoli’s Theorem, {xj} is a relatively compact set in C([0, 1],Rn). Hence,

by passing to a subsequence if necessary, we can assume that xj → x̂ uniform in [0, 1].

On the other hand {ẋj} is bounded and equiabsolutely integrable. The Dunford-Pettis

Theorem (see [6, Theorem 10.3.i]) implies that there exists a function ξ ∈ L1([0, 1],Rn)

such that ẋi ⇀ ξ weakly in L1. Since xj(t) = x0 +
∫ t
0
ẋj(s)ds, we obtain x̂ = x0 +

∫ t
0
ξ(s)ds

and so ˙̂x(t) = ξ(t) a.e. We now notice that |uj(t)| ≤ |a(t)|+ |b(t)|. Hence {uj} is bounded

in Lp([0, 1],Rm). Without loss of generality, we may assume that uj ⇀ û for some

û ∈ Lp([0, 1],Rm). By Lemma 3.3, we obtain (x̂, û) ∈ K(λ).

By (H1), (H2) and (H3), J is weakly lower semicontinuous (see [6, Theorem 2.18.i,

Theorem 10.8.i] and [7, Theorem 3.3, p. 84]). Hence from (33), we have

V (µ, λ) = lim
j→∞

J(xj, uj, µ) ≥ J(x̂, û, µ).

This implies that (x̂, û) ∈ S(µ, λ).

(ii) Upper semicontinuity of S(·, ·).
Assume that V1 is an open set in C([0, 1],Rn) and V2 is a weakly open set in Lp([0, 1],Rm)

such that

S(µ, λ) ⊂ V1 × V2 := V. (40)

We want to show that there exists a neighborhood M0 × Λ0 of (µ, λ) such that

S(µ, λ) ⊂ V, ∀(µ, λ) ∈M0 × Λ0. (41)

By contradiction, we find out a sequence (µi, λi) → (µ, λ) strongly in Lr([0, 1],Rk) ×
Ls([0, 1],Rl) and a sequence (xi, ui) ∈ S(µi, λi) such that (xi, ui) /∈ V . If we can show

that there exists a subsequence {(xij , uij)} of {(xi, ui)} such that xij → x uniformly on

[0, 1] and uij ⇀ u weakly in Lp([0, 1],Rm) for some (x, u) ∈ S(µ, λ), then (xij , uij) ∈ V
for j large enough. This leads to a contradiction and the proof is completed. Therefore,

it remains to prove the following lemma.

Lemma 4.1 There exists (x, u) ∈ S(µ, λ) and a subsequence {(xij , uij)} of {(xi, ui)} such

that xij → x uniformly on [0, 1] and uij ⇀ u weakly in Lp([0, 1],Rm) as j →∞.

Proof. Since (xi, ui) ∈ S(µi, λi), (xi, ui) ∈ K(λi). Henceẋi(t) = A(t, xi(t)) +B(t, xi(t))ui(t) + T (t, λi(t))

xi(0) = x0
(42)
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and |ui(t)| ≤ |a(t)|+ |b(t)|. By (H4) we have

|ẋi(t)| ≤ φ(t)|xi(t)|+ |A(t, 0)|+ (ψ(t)|xi(t)|+ |B(t, 0)|)|ui(t)|+ χ(t)|λi(t)|+ |T (t, 0)|
= |xi(t)|(φ(t) + ψ(t)|ui(t)|) + |A(t, 0)|+ |B(t, 0)||ui(t)|+ χ(t)|λi(t)|+ |T (t, 0)|.

Since λi → λ strongly in Ls([0, 1],Rl), by passing to a subsequence if necessary, there

exists a function γ ∈ Ls([0, 1],R) such that |λi(t)| ≤ γ(t) for a.e. t ∈ [0, 1] (see [7,

Theorem 1.20]). It follows that

|ẋi(t)| ≤ |xi(t)|(φ(t) + ψ(t)(|a(t)|+ |b(t)|))
+ |A(t, 0)|+ |B(t, 0)|(|a(t)|+ |b(t)|) + χ(t)|γ(t)|. (43)

Since xi(t) = x0 +
∫ t
0
ẋi(s)ds, we get

|xi(t)| ≤|x0|+
∫ t

0

(φ(s) + ψ(s)(|a(s)|+ |b(s)|))|xj(s)|ds

+

∫ t

0

(
|A(s, 0)|+ |B(s, 0)|(|a(s)|+ |b(s)|) + |χ(s)|γ(s)

)
ds

≤
∫ t

0

(φ(s) + ψ(s)(|a(s)|+ |b(s)|))|xi(s)|ds

+ |x0|+
∫ 1

0

(
|A(s, 0)|+ |B(s, 0)|(|a(s)|+ |b(s)|) + χ(s)|γ(s)|+ |T (s, 0)|

)
ds.

Define

γ̂1(t) = φ(t) + ψ(t)(|a(t)|+ |b(t)|),
γ̂2(t) = |A(t, 0)|+ |B(t, 0)|(|a(t)|+ |b(t)|) + χ(t)γ(t) + |T (t, 0)|,

M̂1 = |x0|+
∫ 1

0

(
|A(s, 0)|+ |B(s, 0)|(|a(s)|+ |b(s)|) + χ(s)γ(s) + |T (s, 0)|

)
ds.

Then γ̂1, γ̂2 ∈ L1([0, 1],R) and we have

|xi(t)| ≤
∫ t

0

γ̂1(s)|xi(s)|ds+ M̂1.

By Grownwall’s Inequality (see [6, Lemma 18.1.i]) we get

|xi(t)| ≤ M̂1 exp
( ∫ 1

0

γ̂1(s)ds
)

:= M̂2. (44)

Hence {xi} is bounded in C([0, 1],Rn). From this and (43), we obtain

|ẋi| ≤ M̂2γ̂1(t) + γ̂2(t). (45)

Hence

‖ẋi‖1 ≤ M̂2‖γ̂1‖1 + ‖γ̂2‖1. (46)
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Besides, if E is a measurable set of [0, 1], then form (45), we have∫
E

|ẋi(t)|dt ≤ M̂2

∫
E

γ̂1(t)dt+

∫
E

γ̂2(t)dt. (47)

It is clear that the right hand side of (47) approaches to 0 as |E| → 0. Hence {ẋj}
is equiabsolutely integrable and so {xi} is equiabsolutely continuous (see [6, Theorem

10.2.i, p. 317]). By Ascoli’s Theorem, {xi} is a relatively compact set in C([0, 1],Rn).

Repeating the procedure as in the proof of (i), we find out an element x ∈ W 1,1([0, 1],Rn)

such that xi → x uniform in [0, 1] and ẋi ⇀ ẋ weakly in L1([0, 1],Rn). Also, since {ui}
is bounded in Lp([0, 1],Rm), there exists a subsequence uij of {ui} such that uij ⇀ u for

some u ∈ Lp([0, 1],Rm) as j →∞. By Lemma 3.3, we obtain (x, u) ∈ K(λ).

Let us claim that (x, u) ∈ S(µ, λ). In fact, take any (y, v) ∈ K(λ). By Lemma 3.2, we

have

K(λ) ⊂ K(λij) + k0‖λij − λ‖sBZ .

Hence there exists a sequence (yij , vij) ∈ K(λij) such that

‖yij − y‖1,1 + ‖vij − v‖p ≤ k0‖λij − λ‖s.

This implies that yij → y in X and vij → v in U . Since (xij , uij) ∈ S(µij , λij), we have

J(xij , uij , µij) =

∫ 1

0

f(t, xij(t), uij(t), µij(t))dt ≤ J(yij , vij , µij) =

∫ 1

0

f(t, yij(t), vij(t), µij(t))dt.

(48)

By (H1), (H2) and (H3), J is weakly lower semicontinuous (see [6, Theorem 10.8.i and

Theorem 10.9.vii] and [7, Theorem 3.3, p. 84]), that is,

J(x, u, µ) ≤ lim inf
j→∞

J(xij , uij , µij). (49)

By (H1), we have f(t, yij(t), vij(t), µij(t)) → f(t, y(t), v(t), µ(t)) a.e. t ∈ [0, 1]. Since

yij → y uniformly on [0, 1], there exists a constant M > 0 such that |yij(t)| ≤ M for all

t ∈ [0, 1] and j ≥ 1. Since vij → v and µij → µ strongly, there exist vector functions

v0 ∈ Lp([0, 1],Rm) and µ0 ∈ Lr([0, 1],Rk) such that

|vij(t)| ≤ |v0(t)|, |µij(t)| ≤ |µ0(t)|

for all j and a.e. t ∈ [0, 1]. Therefore, from (H3) we have

|f(t, yij(t), vij(t), µij(t))| ≤ ϑ(t) + α1M
α + α2|v(t)|p + α3|µ0(t)|r.

The Dominated Convergence Theorem implies that

lim
j→∞

J(yij , vij , µij) =

∫ 1

0

f(t, y(t), v(t), µ(t))dt = J(y, v, µ). (50)
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Taking the limit on both sides of (48) and using (49) and (50), we get

J(x, u, µ) ≤ J(y, v, µ).

Since (y, v) is arbitrary in K(λ), we get (x, u) ∈ S(µ, λ) ⊂ V . The lemma is justified. 2

• Proof of Theorem 2.2

Let V ′1 be an open set in C([0, 1],Rn) and V ′2 be an open set in Lp([0, 1],Rm) such that

S(µ, λ) ⊂ V ′1 × V ′2 := V ′. (51)

We want to show that there exists a neighborhood M0 × Λ0 of (µ, λ) such that

S(µ, λ) ⊂ V ′,∀(µ, λ) ∈M0 × Λ0. (52)

By contradiction, we find out a sequence (µi, λi) → (µ, λ) strongly in L∞([0, 1],Rk) ×
Ls([0, 1],Rl) and a sequence (xi, ui) ∈ S(µi, λi) such that (xi, ui) /∈ V ′. By Lemma 4.1,

there exists (x, u) ∈ S(µ, λ) and a subsequence {(xij , uij)} of {(xi, ui)} such that xij → x

uniformly and uij ⇀ u weakly in Lp([0, 1],Rm). If we can show that uij → u strongly

then (xij , uij) ∈ V ′ for j large enough. This leads to a contradiction and so the theorem

is proved. In the sequel, we shall denote by {(xj, uj)} and {(µj, λj)} the subsequences

{(xij , uij)} and {(µij , λij)}, respectively. It remains to prove the following lemma.

Lemma 4.2 The sequence {uj} converges strongly to u in Lp([0, 1],Rm).

Proof. Since (xj, uj) ∈ S(µj, λj) and (x, u) ∈ S(µ, λ), they must satisfy the Pontryagin

principle. According to the Pontryagin Maximum Principle (see [10, Theorem 1, p. 134

and p. 139] and [3]), there exist absolutely continuous functions φj and φ such that the

following conditions are fulfilled:

φ̇j(t)
T = −φj(t)T

(
Ax(t, xj(t)) +Bx(t, xj(t))uj(t)

)
+ fx(t, xj(t), uj(t), µj(t)), φj(1) = 0,

(53)

φ̇(t)T = −φ(t)T
(
Ax(t, x(t)) +Bx(t, x(t))u(t)

)
+ fx(t, x(t), u(t), µ(t)), φ(1) = 0 (54)

and for a.e. t ∈ [0, 1],

f(t, xj(t), uj(t), µj(t))− φj(t)T (A(t, xj(t)) +B(t, xj(t)uj(t))

= min
v∈[a(t),b(t)]

{f(t, xj(t), v, µj(t))− φj(t)T (A(t, xj(t)) +B(t, xj(t))v)}, (55)

f(t, x(t), u(t), µj(t))− φ(t)T (A(t, x(t)) +B(t, x(t))u(t))

= min
v∈[a(t),b(t)]

{f(t, x(t), v, µ(t))− φ(t)T (A(t, x(t)) +B(t, x(t))v)}. (56)
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Let us claim that φj − φ→ 0 uniformly on [0, 1]. Indeed, from (53) and (54), we have

φ̇j(t)
T − φ̇(t)T

= −(φj(t)
T − φ(t)T )Ax(t, xj)− φ(t)T (Ax(t, xj)− Ax(t, x))

− (φj(t)
T − φ(t)T )Bx(t, xj)uj − φ(t)T (Bx(t, xj)uj −Bx(t, x)u)

+ fx(t, xj, uj, µj)− fx(t, xj, uj, µ) + fx(t, xj, uj, µ)− fx(t, x, u, µ)

= −(φj(t)
T − φ(t)T )Ax(t, xj)− φ(t)T (Ax(t, xj)− Ax(t, x))

− (φj(t)
T − φ(t)T )Bx(t, xj)uj − φ(t)T

(
Bx(t, xj)−Bx(t, x)

)
uj − φ(t)TBx(t, x)(uj − u)

+ fx(t, xj, uj, µj)− fx(t, xj, uj, µ) + fx(t, xj, uj, µ)− fx(t, x, u, µ).

Define ϕj(s) = φj(1−s) and ϕ(s) = φ(1−s) with s ∈ [0, 1], we have d
ds
ϕj(s) = −φ̇j(1−s)

and ϕ(0) = 0 = ϕ(0). Moreover, from above we get

− (
d

ds
ϕj(s)

T − d

ds
ϕ(s)T )

= −(ϕj(s)
T − ϕ(s)T )Ax(1− s, xj)− ϕ(s)T (Ax(1− s, xj)− Ax(1− s, x))

− (ϕj(s)
T − ϕ(s)T )Bx(1− s, xj)uj − ϕ(s)T

(
Bx(1− s, xj)−Bx(1− s, x)

)
uj

− ϕ(s)TBx(1− s, x)(uj − u)

+ fx(1− s, xj, uj, µj)− fx(1− s, xj, uj, µ) + fx(1− s, xj, uj, µ)− fx(1− s, x, u, µ).

From this and

ϕj(s)
T − ϕ(s)T =

∫ s

0

(
d

ds
ϕj(τ)T − d

ds
ϕT (τ))dτ,

we get

|ϕj(s)− ϕ(s)| = |ϕj(s)T − ϕ(s)T | =
∣∣ ∫ s

0

(
d

ds
ϕj(τ)T − d

ds
ϕT (τ))dτ

∣∣
≤
∣∣ ∫ s

0

(ϕj(τ)T − ϕ(τ)T )Ax(1− τ, xj)dτ
∣∣+
∣∣ ∫ s

0

ϕ(τ)T (Ax(1− τ, xj)− Ax(1− τ, x))dτ
∣∣

+
∣∣ ∫ s

0

(ϕTj (τ)− ϕT (τ))Bx(1− τ, xj)ujdτ
∣∣+
∣∣ ∫ s

0

ϕ(s)T
(
Bx(1− τ, xj)−Bx(1− τ, x)

)
ujdτ

∣∣
+
∣∣ ∫ s

0

ϕ(τ)TBx(1− τ, x)(uj − u)dτ |+
∣∣ ∫ s

0

fx(1− τ, xj, uj, µj)− fx(1− τ, xj, uj, µ)dτ
∣∣

+
∣∣ ∫ s

0

fx(1− τ, xj, uj, µ)− fx(1− τ, x, u, µ)dτ
∣∣

≤
∫ s

0

|ϕj(τ)− ϕ(τ))|
(
|Ax(1− τ, xj)|+ |Bx(1− τ, xj)uj|

)
dτ

+ ‖ϕ‖0
∫ 1

0

|Ax(1− τ, xj)− Ax(1− τ, x)|dτ + ‖ϕ‖0
∫ 1

0

|Bx(1− τ, xj)−Bx(1− τ, x)||uj|dτ

+ sup
s∈[0,1]

∣∣ ∫ s

0

ϕ(τ)TBx(1− τ, x)(uj − u)dτ |+
∫ 1

0

|fx(1− τ, xj, uj, µj)− fx(1− τ, xj, uj, µ)|dτ

+

∫ 1

0

|fx(1− τ, xj, uj, µ)− fx(1− τ, x, u, µ)|dτ. (57)
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Note that

sup
s∈[0,1]

∣∣ ∫ s

0

ϕ(τ)TBx(1− τ, x)(uj − u)dτ | ≤
∫ 1

0

|ϕ(τ)TBx(1− τ, x)||(uj − u)|dτ

≤ ‖ϕTBx(·, x)‖qq‖uj − u‖pp
≤ ‖ϕTBx(·, x)‖qqM

for some constant M > 0. Here we used the fact that {uj−u} is bounded because uj ⇀ u.

Since uj ⇀ u, xj → x and µj → µ uniformly, there exist positive numbers γ1, γ2, γ3

such that

‖uj‖Lp ≤ γ1, ‖xj‖0 ≤ γ2, ‖µj‖∞ ≤ γ3, ∀j ≥ 1.

Since ki is continuous, we obtain

ki(t, |xj(t)|, |µj(t)|, |µ(t)|) ≤ ξi := max
(t1,t2,t3,t4)∈[0,1]×[0,γ2]×[0,γ3]×[0,‖µ‖∞]

ki(t1, t2, t3, t4) (58)

with i = 1, 2. Combining this with (9) and (11), we have∫ 1

0

|fx(1− τ, xj, uj, µj)− fx(1− τ, xj, uj, µ)|dτ

+

∫ 1

0

|fx(1− τ, xj, uj, µ)− fx(1− τ, x, u, µ)|dτ

≤
∫ 1

0

ξ1|uj|η|µj(1− τ)− µ(1− τ)|s1dτ +

∫ 1

0

k3(1− τ)|xj(1− τ)− x(1− τ)|dτ

≤ C1ξ1‖uj‖ηLp‖µj − µ‖s1L∞ + ‖k3(·)‖L1‖xj − x‖0
≤ C1ξ1γ

η
1‖µj − µ‖s1L∞ + ‖k3(·)‖L1‖xj − x‖0

for some constant C1 > 0. From this and (57), we get

|ϕj(s)− ϕ(s)| ≤
∫ s

0

|ϕj(τ)− ϕ(τ))|
(
|Ax(1− τ, xj(τ))|+ |Bx(1− τ, xj)uj|

)
dτ

+ ‖ϕ‖0
∫ 1

0

|Ax(1− τ, xj)− Ax(1− τ, x)|dτ + ‖ϕ‖0
∫ 1

0

|Bx(1− τ, xj)−Bx(1− τ, x)||uj|dτ

+ sup
s∈[0,1]

∣∣ ∫ s

0

ϕ(τ)TBx(1− τ, x)(uj − u)dτ |+ C1ξ1γ
η
1‖µj − µ‖s1L∞ + ‖k3(·)‖L1‖xj − x‖0.

By Gronwall’s Inequality for integral form, we obtain

|ϕj(s)− ϕ(s)|

≤ exp
( ∫ 1

0

(|Ax(1− τ, xj)|+ |Bx(1− τ, xj)uj|)dτ
){
‖ϕ‖0

∫ 1

0

|Ax(1− τ, xj)− Ax(1− τ, x)|dτ

+ ‖ϕ‖0
∫ 1

0

|Bx(1− τ, xj)−Bx(1− τ, x)||uj|dτ + sup
s∈[0,1]

∣∣ ∫ s

0

ϕ(τ)TBx(1− τ, x)(uj − u)dτ |

+ C1ξ1γ
η
1‖µj − µ‖s1L∞ + ‖k3(·)‖L1‖xj − x‖0

}
. (59)
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Let us show that the right hand side of (59) converges to 0 as j → ∞. Note that since

Ax(·, ·) and Bx(·, ·) are continuous and ‖xj‖0 ≤ γ2, we have

|Ax(t, xj(t))| ≤ sup
(t,x)∈[0,1]×γ2Bn

|Ax(t, x)| < +∞ (60)

|Bx(t, xj(t))| ≤ sup
(t,x)∈[0,1]×γ2Bn

|Bx(t, x)| < +∞, (61)

where Bn is the unit ball in Rn. We have∫ 1

0

(|Ax(1− τ, xj)|+ |Bx(1− τ, xj)uj|)dτ ≤
∫ 1

0

(|Ax(1− τ, xj)|dτ + ‖Bx(·, xj)‖q‖uj‖p

≤
∫ 1

0

(|Ax(1− τ, xj)|dτ + ‖Bx(·, xj)‖qγ1. (62)

From (60), (61) and the Dominated Convergence Theorem, we see that the right hand

side of (62) converges to
∫ 1

0
(|Ax(1− τ, x)|dτ + ‖Bx(·, x)‖qγ1 and so it is bounded. Hence∫ 1

0

(|Ax(1− τ, xj)|+ |Bx(1− τ, xj)uj|)dτ ≤M1, ∀j ≥ 1

for some constant M1 > 0. Also, by the Dominated Convergence Theorem, we have

‖ϕ‖0
∫ 1

0

|Ax(1− τ, xj)−Ax(1− τ, x)|dτ +‖ϕ‖0
∫ 1

0

|Bx(1− τ, xj)−Bx(1− τ, x)||uj|dτ → 0

as j → ∞. The last term in (59) also converges to 0 because µj → µ and xj → x

uniformly. We now show that

sup
s∈[0,1]

∣∣ ∫ s

0

ϕ(τ)TBx(1− τ, x)(uj − u)dτ | → 0 as j →∞. (63)

By contradiction, there exists ε1 > 0 such that

sup
s∈[0,1]

∣∣ ∫ s

0

ϕ(τ)TBx(1− τ, x)(uj − u)dτ | > ε1, ∀j ≥ 1.

Hence for each j, there exist sj ∈ [0, 1] such that∣∣ ∫ sj

0

ϕ(τ)TBx(1− τ, x)(uj − u)dτ
∣∣ > ε1, ∀j ≥ 1.

By passing to a subsequence if necessary, we can assume that sj → s0 ∈ [0, 1]. From the

above, we have

ε1 <
∣∣ ∫ sj

0

ϕ(τ)TBx(1− τ, x)(uj − u)dτ
∣∣

≤ |
∫ s0

0

ϕ(τ)TBx(1− τ, x)(uj − u)dτ
∣∣+
∣∣ ∫ sj

s0

ϕ(τ)TBx(1− τ, x)(uj − u)dτ
∣∣

≤ |
∫ 1

0

1[0,s0](τ)ϕ(τ)TBx(1− τ, x)(uj − u)dτ
∣∣

+
( ∫ sj

s0

|ϕ(τ)TBx(1− τ, x)|qdτ
)1/q‖uj − u‖pp, (64)
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where 1[0,s0] is the indicator function of interval [0, s0]. It is easy to see that

1[0,s0](·)ϕ(·)TBx(1− ·, x) ∈ Lq([0, 1],Rm).

Since uj ⇀ u weakly in Lp([0, 1],Rm), we get

|
∫ 1

0

1[0,s0](τ)ϕ(τ)TBx(1− τ, x)(uj − u)dτ
∣∣→ 0 as j →∞.

Since ‖uj − u‖pp is bounded and |ϕ(τ)TBx(1− τ, x)| is continuous, we get

( ∫ sj

s0

|ϕ(τ)TBx(1− τ, x)|qdτ
)1/q‖uj − u‖pp → 0 as j →∞.

By letting j →∞ in (64), we obtain a contradiction. Hence (63) is valid.

In summary, we have shown that the right hand side of (59) converges to 0 as j →∞.

Consequently, ϕj → ϕ uniformly. Hence φj → φ uniformly on [0, 1]. The claim is justified.

From (55) and (56), we see that uj and u satisfy variational inequalities

〈fu(t, xj(t), uj(t), µj(t))− φj(t)TB(t, xj(t)), v − uj(t)〉 ≥ 0 ∀v ∈ [a(t), b(t)]

and

〈fu(t, x(t), u(t), µ(t))− φ(t)TB(t, x(t)), v − u(t)〉 ≥ 0 ∀v ∈ [a(t), b(t)],

respectively. Hence

〈fu(t, xj(t), uj(t), µj(t))− φj(t)TB(t, xj(t)), u(t)− uj(t)〉 ≥ 0

and

〈fu(t, x(t), u(t), µ(t))− φ(t)TB(t, x(t)), uj(t)− u(t)〉 ≥ 0

for a.e. t ∈ [0, 1]. Using above inequalities and (12), we get

α|uj(t)− u(t)|p ≤ 〈fu(t, xj(t), uj(t), µ(t))− fu(t, x(t), u(t), µ(t)), uj(t)− u(t)〉
≤ 〈fu(t, xj(t), uj(t), µ(t))− fu(t, x(t), u(t), µ(t)), uj(t)− u(t)〉
+ 〈fu(t, xj(t), uj(t), µj(t))− φj(t)TB(t, xj(t)), u(t)− uj(t)〉
+ 〈fu(t, x(t), u(t), µ(t))− φ(t)TB(t, x(t)), uj(t)− u(t)〉
= 〈fu(t, xj(t), uj(t), µ(t))− fu(t, xj(t), uj(t), µj(t)), uj(t)− u(t)〉
+ 〈φj(t)T (t)B(t, xj(t))− φ(t)TB(t, x(t)), uj(t)− u(t)〉
≤ |fu(t, xj(t), uj(t), µ(t))− fu(t, xj(t), uj(t)||uj(t)− u(t)|
+ |φj(t)TB(t, xj(t))− φ(t)TB(t, x(t))||uj(t)− u(t)|.
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It follows that for a.e. t ∈ [0, 1],

α|uj(t)− u(t)|p−1 ≤ |fu(t, xj(t), uj(t), µ(t))− fu(t, xj(t), uj(t)|
+ |φj(t)TB(t, xj(t))− φ(t)TB(t, x(t))|.

Combining this with (10) and (58), we get

α|uj(t)− u(t)|p−1 ≤ ξ2|uj(t)|θ|µj − µ|s2 + |φj(t)TB(t, xj(t))− φ(t)TB(t, x(t))|.

Using the inequality (a + b)q ≤ 2q−1(aq + bq) for a, b ≥ 0 and q ≥ 1 (see [1, Lemma 2.24,

p. 34]), yields

αq|uj(t)− u(t)|q(p−1) = αq|uj(t)− u(t)|p

≤ 2q−1
(
ξq2‖uj(t)|θq|µj(t)− µ(t)|s2q + |φj(t)TB(t, xj(t))− φ(t)TB(t, x(t))|q

)
.

Here we used the equality q(p − 1) = p. Integrating on [0, 1] and using the facts θq ≤ p

and ‖uj‖p ≤ γ1, we obtain

αq‖uj − u‖pLp ≤ 2q−1
(
C2‖µj − µ‖s2qL∞γ

θq
1 +

∫ 1

0

|φj(t)TB(t, xj(t))− φ(t)TB(t, x(t))|qdt
)

(65)

for some absolutely constant C2 > 0. Since |φj(t)TB(t, xj(t))− φ(t)TB(t, x(t))| → 0 and

(7), the Dominated Convergence Theorem implies that∫ 1

0

|φj(t)TB(t, xj(t))− φ(t)TB(t, x(t))|qdt→ 0 as j →∞.

Combining this with the fact that µj → µ in L∞([0, 1],Rl), we see that the right hand side

of (65) converges to 0 as j →∞. Hence uj → u strongly in Lp([0, 1],Rm). The lemma is

proved.

Finally, if S(µ, λ) is a singleton, then S(·, ·) is lower semicontinuous at (µ, λ). In fact,

let V1 be an open set in C([0, 1],Rn) and V2 be an open set in Lp([0, 1],Rm) such that

S(µ, λ) ∩ (V1 × V2) 6= Ø. Since S(µ, λ) = {(x, u)}, we have S(µ, λ) ⊂ (V1 × V2). By

upper semicontinuity of S(·, ·) at (µ, λ), there are neighborhoods U1 of µ and U2 of λ such

that S(µ, λ) ⊂ V1 × V2 for all (µ, λ) ∈ U1 × U2 and so S(µ, λ) ∩ (V1 × V2) 6= Ø for all

(µ, λ) ∈ U1×U2. Hence S(·, ·) is (s, s)−lower semicontinuous at (µ, λ). This implies that

S(·, ·) is continuous at (µ, λ). The proof of Theorem 2.2 is now complete. 2
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